Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The world needs an accelerated energy transition to meet sustainable development goals. Energy planning has a critical role in providing the information that can guide decision-makers, and energy planning methods continue to evolve rapidly. This Special Issue provides new insights for long-term energy planning, drawing on the Clean Energy Ministerial Long Term Energy Planning Scenarios initiative and the IRENA LTES network.
Technology: general issues --- History of engineering & technology --- climate change --- Paris Agreement --- 100% renewable energy --- 1.5 °C mitigation pathway --- energy transition --- energy scenario --- GHG mitigation --- CO2 emission --- non-energy emission --- open access book --- chemical and petrochemical sector --- decarbonisation --- renewable energy --- circular economy --- electrification --- material flow analysis --- hydropower --- electric transport --- energy modeling --- ELENA --- urbs --- Ecuador --- decarbonization --- INDC --- LEAP --- long-term scenarios --- GHG inventory --- power system expansion --- co-optimization of energy and reserve --- associated natural gas --- multi-stage stochastic programming --- electricity-gas integration --- regulation --- Brazil --- Mexico --- renewables --- reliability --- generation system expansion --- efficient energy planning --- energy systems modelling --- scenario analysis --- TIMES-Ukraine --- paris agreement --- energy efficiency --- I-LTS --- energy scenarios --- 2050 carbon neutrality --- energy planning --- TIMES model --- net-zero emission --- decomposition analysis --- mitigation --- integrated assessment --- shared socioeconomic pathways --- scenarios --- climate adaptation --- adaptive capacity --- solar power plants --- thematic analysis --- long-term energy scenarios (LTES) --- site selection --- power purchase agreement --- greenhouse gas emissions --- Ghana road transport --- energy demand model --- biofuel integration --- arable land requirement --- lifestyle --- climate change mitigation --- LTES --- long-term energy scenarios --- energy modelling --- clean energy transition --- climate scenarios --- climate change --- Paris Agreement --- 100% renewable energy --- 1.5 °C mitigation pathway --- energy transition --- energy scenario --- GHG mitigation --- CO2 emission --- non-energy emission --- open access book --- chemical and petrochemical sector --- decarbonisation --- renewable energy --- circular economy --- electrification --- material flow analysis --- hydropower --- electric transport --- energy modeling --- ELENA --- urbs --- Ecuador --- decarbonization --- INDC --- LEAP --- long-term scenarios --- GHG inventory --- power system expansion --- co-optimization of energy and reserve --- associated natural gas --- multi-stage stochastic programming --- electricity-gas integration --- regulation --- Brazil --- Mexico --- renewables --- reliability --- generation system expansion --- efficient energy planning --- energy systems modelling --- scenario analysis --- TIMES-Ukraine --- paris agreement --- energy efficiency --- I-LTS --- energy scenarios --- 2050 carbon neutrality --- energy planning --- TIMES model --- net-zero emission --- decomposition analysis --- mitigation --- integrated assessment --- shared socioeconomic pathways --- scenarios --- climate adaptation --- adaptive capacity --- solar power plants --- thematic analysis --- long-term energy scenarios (LTES) --- site selection --- power purchase agreement --- greenhouse gas emissions --- Ghana road transport --- energy demand model --- biofuel integration --- arable land requirement --- lifestyle --- climate change mitigation --- LTES --- long-term energy scenarios --- energy modelling --- clean energy transition --- climate scenarios
Choose an application
The world needs an accelerated energy transition to meet sustainable development goals. Energy planning has a critical role in providing the information that can guide decision-makers, and energy planning methods continue to evolve rapidly. This Special Issue provides new insights for long-term energy planning, drawing on the Clean Energy Ministerial Long Term Energy Planning Scenarios initiative and the IRENA LTES network.
Technology: general issues --- History of engineering & technology --- climate change --- Paris Agreement --- 100% renewable energy --- 1.5 °C mitigation pathway --- energy transition --- energy scenario --- GHG mitigation --- CO2 emission --- non-energy emission --- open access book --- chemical and petrochemical sector --- decarbonisation --- renewable energy --- circular economy --- electrification --- material flow analysis --- hydropower --- electric transport --- energy modeling --- ELENA --- urbs --- Ecuador --- decarbonization --- INDC --- LEAP --- long-term scenarios --- GHG inventory --- power system expansion --- co-optimization of energy and reserve --- associated natural gas --- multi-stage stochastic programming --- electricity-gas integration --- regulation --- Brazil --- Mexico --- renewables --- reliability --- generation system expansion --- efficient energy planning --- energy systems modelling --- scenario analysis --- TIMES-Ukraine --- paris agreement --- energy efficiency --- I-LTS --- energy scenarios --- 2050 carbon neutrality --- energy planning --- TIMES model --- net-zero emission --- decomposition analysis --- mitigation --- integrated assessment --- shared socioeconomic pathways --- scenarios --- climate adaptation --- adaptive capacity --- solar power plants --- thematic analysis --- long-term energy scenarios (LTES) --- site selection --- power purchase agreement --- greenhouse gas emissions --- Ghana road transport --- energy demand model --- biofuel integration --- arable land requirement --- lifestyle --- climate change mitigation --- LTES --- long-term energy scenarios --- energy modelling --- clean energy transition --- climate scenarios --- n/a
Choose an application
The world needs an accelerated energy transition to meet sustainable development goals. Energy planning has a critical role in providing the information that can guide decision-makers, and energy planning methods continue to evolve rapidly. This Special Issue provides new insights for long-term energy planning, drawing on the Clean Energy Ministerial Long Term Energy Planning Scenarios initiative and the IRENA LTES network.
climate change --- Paris Agreement --- 100% renewable energy --- 1.5 °C mitigation pathway --- energy transition --- energy scenario --- GHG mitigation --- CO2 emission --- non-energy emission --- open access book --- chemical and petrochemical sector --- decarbonisation --- renewable energy --- circular economy --- electrification --- material flow analysis --- hydropower --- electric transport --- energy modeling --- ELENA --- urbs --- Ecuador --- decarbonization --- INDC --- LEAP --- long-term scenarios --- GHG inventory --- power system expansion --- co-optimization of energy and reserve --- associated natural gas --- multi-stage stochastic programming --- electricity-gas integration --- regulation --- Brazil --- Mexico --- renewables --- reliability --- generation system expansion --- efficient energy planning --- energy systems modelling --- scenario analysis --- TIMES-Ukraine --- paris agreement --- energy efficiency --- I-LTS --- energy scenarios --- 2050 carbon neutrality --- energy planning --- TIMES model --- net-zero emission --- decomposition analysis --- mitigation --- integrated assessment --- shared socioeconomic pathways --- scenarios --- climate adaptation --- adaptive capacity --- solar power plants --- thematic analysis --- long-term energy scenarios (LTES) --- site selection --- power purchase agreement --- greenhouse gas emissions --- Ghana road transport --- energy demand model --- biofuel integration --- arable land requirement --- lifestyle --- climate change mitigation --- LTES --- long-term energy scenarios --- energy modelling --- clean energy transition --- climate scenarios --- n/a
Listing 1 - 3 of 3 |
Sort by
|