Narrow your search

Library

KU Leuven (3)

ULiège (3)

Vlaams Parlement (3)

FARO (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (3)

2020 (3)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Recent Advances in the Design of Structures with Passive Energy Dissipation Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.

Keywords

History of engineering & technology --- stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures


Book
Buildings and Structures under Extreme Loads II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions.

Keywords

Technology: general issues --- History of engineering & technology --- blast loads --- slab-column joints --- prediction model --- damage level --- progressive collapse --- steel beam-to-column connections --- catenary mechanism --- double-span assemblies --- stiffness degradation --- timber-to-timber composite (TCC) joints --- push-out (PO) test setup --- inclined self-tapping screws (STSs) --- finite-element (FE) method --- cohesive zone modelling (CZM) method --- boundaries --- friction --- sensitivity study --- prototype abutment --- non-destructive test --- surcharge load --- mode number --- scour --- steel truss --- roof structure --- partial collapse --- finite element analysis --- lightning strike --- cable-stayed bridge --- social disaster --- blast scenario --- blast analysis --- LS-DYNA --- balau wood --- cross-arm --- transmission tower --- bracing system --- creep --- findley’s power law model --- burger model --- top-seat angle connections (TSACW) --- component-based models --- initial stiffness --- ultimate moment capacity --- moment-rotation relation --- artificial neural network (ANN) --- sensitivity analysis (SA) --- reinforced concrete column --- multi-column pier --- seismic behavior --- lap-splice --- transverse reinforcement --- plastic hinge --- ductility --- bonded-in rod (BiR) connections --- adhesives --- fracture modes --- moisture --- experiments --- linear elastic fracture mechanics (LEFM) --- analytical model --- aeroelastic experiments --- experimental uncertainty --- singular value decomposition --- correlation field --- cathedral --- foundation rehabilitation --- jacked-in piles --- soil injection --- cracks --- masonry --- differential equation of motion --- Legendre–Galerkin matrix (LGM) method --- algebraic polynomials --- single degree of freedom (SDOF) --- multi degree of freedom (MDOF) --- n/a --- findley's power law model --- Legendre-Galerkin matrix (LGM) method


Book
Recent Advances in the Design of Structures with Passive Energy Dissipation Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.

Keywords

stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures


Book
Buildings and Structures under Extreme Loads II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions.

Keywords

blast loads --- slab-column joints --- prediction model --- damage level --- progressive collapse --- steel beam-to-column connections --- catenary mechanism --- double-span assemblies --- stiffness degradation --- timber-to-timber composite (TCC) joints --- push-out (PO) test setup --- inclined self-tapping screws (STSs) --- finite-element (FE) method --- cohesive zone modelling (CZM) method --- boundaries --- friction --- sensitivity study --- prototype abutment --- non-destructive test --- surcharge load --- mode number --- scour --- steel truss --- roof structure --- partial collapse --- finite element analysis --- lightning strike --- cable-stayed bridge --- social disaster --- blast scenario --- blast analysis --- LS-DYNA --- balau wood --- cross-arm --- transmission tower --- bracing system --- creep --- findley’s power law model --- burger model --- top-seat angle connections (TSACW) --- component-based models --- initial stiffness --- ultimate moment capacity --- moment-rotation relation --- artificial neural network (ANN) --- sensitivity analysis (SA) --- reinforced concrete column --- multi-column pier --- seismic behavior --- lap-splice --- transverse reinforcement --- plastic hinge --- ductility --- bonded-in rod (BiR) connections --- adhesives --- fracture modes --- moisture --- experiments --- linear elastic fracture mechanics (LEFM) --- analytical model --- aeroelastic experiments --- experimental uncertainty --- singular value decomposition --- correlation field --- cathedral --- foundation rehabilitation --- jacked-in piles --- soil injection --- cracks --- masonry --- differential equation of motion --- Legendre–Galerkin matrix (LGM) method --- algebraic polynomials --- single degree of freedom (SDOF) --- multi degree of freedom (MDOF) --- n/a --- findley's power law model --- Legendre-Galerkin matrix (LGM) method


Book
Recent Advances in the Design of Structures with Passive Energy Dissipation Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.

Keywords

History of engineering & technology --- stay cable --- vibration control --- hybrid control --- inertial mass damper --- viscous damper --- passive vibration control --- inerter system --- cable bracing --- parametric study --- optimal design --- tuned mass damper --- inerter --- high-rise buildings --- wind tunnel test --- wind-induced response --- structural control --- synchronous multi-point pressure measurement --- seismic protection --- displacement-dependent damping --- stochastic dynamic analysis --- metal damper --- performance parameter --- cyclic loading test --- hysteretic behavior --- energy dissipation capability --- multi-degree of freedom --- graphical approach --- suspension bridges --- seismic test --- pushover test --- precast concrete structure --- shake table --- Base-Isolated Buildings --- bearing displacement --- STMD --- MTMDs --- d-MTMDs --- incremental dynamic analysis --- earthquake --- energy dissipation --- “double-step” characteristics --- stiffness lifting --- seismic performance --- horizontal connection --- prefabricated shear wall structural systems --- high-tech factory --- lead rubber bearing --- moving crane --- soil structure interaction --- vibration --- wind load --- motion-based design --- uncertainty conditions --- constrained multi-objective optimization --- reliability analysis --- passive structural control --- cable-stayed bridges --- adjacent buildings --- seismic pounding --- energy-dissipation systems --- distributed damping systems --- optimal placement --- multibuilding systems --- hybrid genetic algorithm --- parallel computing --- pounding protection --- seismic isolation --- energy dissipation devices --- negative stiffness device --- damped structures


Book
Buildings and Structures under Extreme Loads II
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions.

Keywords

Technology: general issues --- History of engineering & technology --- blast loads --- slab-column joints --- prediction model --- damage level --- progressive collapse --- steel beam-to-column connections --- catenary mechanism --- double-span assemblies --- stiffness degradation --- timber-to-timber composite (TCC) joints --- push-out (PO) test setup --- inclined self-tapping screws (STSs) --- finite-element (FE) method --- cohesive zone modelling (CZM) method --- boundaries --- friction --- sensitivity study --- prototype abutment --- non-destructive test --- surcharge load --- mode number --- scour --- steel truss --- roof structure --- partial collapse --- finite element analysis --- lightning strike --- cable-stayed bridge --- social disaster --- blast scenario --- blast analysis --- LS-DYNA --- balau wood --- cross-arm --- transmission tower --- bracing system --- creep --- findley's power law model --- burger model --- top-seat angle connections (TSACW) --- component-based models --- initial stiffness --- ultimate moment capacity --- moment-rotation relation --- artificial neural network (ANN) --- sensitivity analysis (SA) --- reinforced concrete column --- multi-column pier --- seismic behavior --- lap-splice --- transverse reinforcement --- plastic hinge --- ductility --- bonded-in rod (BiR) connections --- adhesives --- fracture modes --- moisture --- experiments --- linear elastic fracture mechanics (LEFM) --- analytical model --- aeroelastic experiments --- experimental uncertainty --- singular value decomposition --- correlation field --- cathedral --- foundation rehabilitation --- jacked-in piles --- soil injection --- cracks --- masonry --- differential equation of motion --- Legendre-Galerkin matrix (LGM) method --- algebraic polynomials --- single degree of freedom (SDOF) --- multi degree of freedom (MDOF)


Book
Precision Dimensional Measurements
Authors: ---
ISBN: 3039217135 3039217127 9783039217137 Year: 2019 Publisher: Basel, Switzerland : MDPI,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This collection represents successful invited submissions from the papers presented at the 8th Annual Conference of Energy Economics and Management held in Beijing, China, 22-24 September 2017. With over 500 participants, the conference was co-hosted by the Management Science Department of National Natural Science Foundation of China, the Chinese Society of Energy Economics and Management, and Renmin University of China on the subject area of "Energy Transition of China: Opportunities and Challenges". The major strategies to transform the energy system of China to a sustainable model include energy/economic structure adjustment, resource conservation, and technology innovation. Accordingly, the conference and its associated publications encourage research to address the major issues faced in supporting the energy transition of China. Papers published in this collection cover the broad spectrum of energy economics issues, including building energy efficiency, industrial energy demand, public policies to promote new energy technologies, power system control technology, emission reduction policies in energy-intensive industries, emission measurements of cities, energy price movement, and the impact of new energy vehicle.

Keywords

Kolsky bar; speckle; in-plane displacement measurement; wavelet transform; dynamic mechanical properties; orthogonally splitting imaging pose sensor; general imaging model; radial basis function interpolation; probe; leaf spring; chemical etching; beryllium bronze; micro fiber sensor; shape reconstruction; soft surgical robot; pneumatic actuator; modeling; through-focus optical microscopy; illumination polarization; target structure; sensitivity; error separation technique; cylindricity; form measurement; in situ measurement; frequency scanning interferometry; adaptive filtering method; mosaic algorithm; null test measurement; stitching interferometry; cylindrical surface; iterative algorithm; chessboard corner; camera calibration; pose estimation; sub-pixel localization; laser diode; interferometer; wavelength corrector; angular error; nanopositioning stage; simultaneous measurement; six degrees-of-freedom errors; rotary axis; error model; interference lithography; two-axis planar scale grating; Lloyd's mirror; surface encoder; metrology; precision measurement; air refractive index; wavelength correction; strained silicon (ε-Si); multiscale; structural property; mechanical property; micro-Raman spectroscopy; cross-section; dislocation; systems design; simulation; form measurements; 3D measurements; capacitive linear displacement sensor; vernier-type absolute structure; differential sensing structure; time-grating; optical interference; phase generated carrier; phase demodulation; water surface acoustic waves; five-axis system; CMM; dimensional measurements; inspection planning; accuracy; optical frequency comb; heterodyne interferometry; center wavelength; IMU; dynamic tracking; limbs' coordination; motor control pattern; motor learning; surface encoder; multi-degree-of-freedom; interferometry; grating; prism; scale grating; Fizeau interferometer; optical encoder; pitch deviation; out-of-flatness; uncertainty; digital image correlation (DIC); edge detection; random speckle images; surface profilometry; automated optical inspection (AOI); data compression; data reduction; free-form surface; point cloud; scanning measurement; redundancy identifying; redundancy eliminating; geometric feature similarity; structural health monitoring; real-time monitoring; tunnel deformation measurement; machine vision; laser beam; wireless; low visibility; ellipsometry; scatterometry; Mueller matrix; diffraction grating; inverse scattering; pitch measurement; on-machine measurement; through-hole depth; image processing; automatic drilling and riveting; large-scale composite board; depth detection; measurement uncertainty; coordinate measuring machines; evaluation and optimization; geometrical product specifications; Photoelectric scanning; angle intersection; dynamic error modeling; large-scale metrology; laser feedback; precision measurement; frequency-shifted; solid-state laser; small hole diameter; depth-to-diameter ratio; spherical scattering electrical-field probing; hole diameter measuring machine; grating interferometer; laser encoder; spatially separated heterodyne interferometry; alignment tolerance; chromatic confocal probe; femtosecond laser; measurement range expansion; side-lobe; linear guideway; geometric errors; pentaprism; machine tool; ellipsometry; volume grating; nanostructure metrology; distributed dielectric constant model; holography; optical measurement; dimensional measurement; aspheric mirror; vertex position; absolute distance measurement; frequency-sweep polarization-modulation ranging; frequency drift; error compensation; optimization; power consumption; machining efficiency; machining cost; semiconductor; surface profilometry; moiré projection; 3-D measurement; automated optical inspection (AOI); Fizeau interferometry; wavelength tuning; separation of interferograms; characterization of a transparent plate; 36-step algorithm; mass; center of gravity; side force; load cell; mechanical structure; modeling; n/a

Listing 1 - 7 of 7
Sort by