Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The detection and quantification of with high precision nucleic acid biomarkers and protein biomarkers in resource-limited settings is key to the early diagnosis of diseases and for monitoring the effects of treatments. As there is an enormous demand for high-quality biomarker detection platforms that are robust and highly applicable in resource-limited settings, this book is devoted to exploring methods for detection and quantification of biomarkers, focusing on the recent advances in this field.
Research & information: general --- SERS --- LPS --- bacteria --- endotoxin --- lipid A --- silver nanorods --- creatinine --- ZnO nanowires --- piezo-enzymatic-reaction effect --- self-powered biosensor --- immunosensors --- electrochemical immunosensors --- biosensors --- voltammetric immunosensors --- amperometric immunosensors --- impedimetric immunosensors --- eletrochemiluminescent immunosensors --- cysteine --- biothiols --- cystinuria --- portable --- fluorimeter --- bio-imaging --- cancer --- bladder cancer --- prostate cancer --- urinary biomarkers --- urinary VOCs --- machine olfaction --- GC-IMS --- GC-TOF-MS --- cancer markers --- immune checkpoints --- PD-1 --- PD-L1 --- high-aspect-ratio microfluidic channel --- parallelogram cross-section --- monodisperse droplet --- droplet generation
Choose an application
The detection and quantification of with high precision nucleic acid biomarkers and protein biomarkers in resource-limited settings is key to the early diagnosis of diseases and for monitoring the effects of treatments. As there is an enormous demand for high-quality biomarker detection platforms that are robust and highly applicable in resource-limited settings, this book is devoted to exploring methods for detection and quantification of biomarkers, focusing on the recent advances in this field.
SERS --- LPS --- bacteria --- endotoxin --- lipid A --- silver nanorods --- creatinine --- ZnO nanowires --- piezo-enzymatic-reaction effect --- self-powered biosensor --- immunosensors --- electrochemical immunosensors --- biosensors --- voltammetric immunosensors --- amperometric immunosensors --- impedimetric immunosensors --- eletrochemiluminescent immunosensors --- cysteine --- biothiols --- cystinuria --- portable --- fluorimeter --- bio-imaging --- cancer --- bladder cancer --- prostate cancer --- urinary biomarkers --- urinary VOCs --- machine olfaction --- GC-IMS --- GC-TOF-MS --- cancer markers --- immune checkpoints --- PD-1 --- PD-L1 --- high-aspect-ratio microfluidic channel --- parallelogram cross-section --- monodisperse droplet --- droplet generation
Choose an application
The detection and quantification of with high precision nucleic acid biomarkers and protein biomarkers in resource-limited settings is key to the early diagnosis of diseases and for monitoring the effects of treatments. As there is an enormous demand for high-quality biomarker detection platforms that are robust and highly applicable in resource-limited settings, this book is devoted to exploring methods for detection and quantification of biomarkers, focusing on the recent advances in this field.
Research & information: general --- SERS --- LPS --- bacteria --- endotoxin --- lipid A --- silver nanorods --- creatinine --- ZnO nanowires --- piezo-enzymatic-reaction effect --- self-powered biosensor --- immunosensors --- electrochemical immunosensors --- biosensors --- voltammetric immunosensors --- amperometric immunosensors --- impedimetric immunosensors --- eletrochemiluminescent immunosensors --- cysteine --- biothiols --- cystinuria --- portable --- fluorimeter --- bio-imaging --- cancer --- bladder cancer --- prostate cancer --- urinary biomarkers --- urinary VOCs --- machine olfaction --- GC-IMS --- GC-TOF-MS --- cancer markers --- immune checkpoints --- PD-1 --- PD-L1 --- high-aspect-ratio microfluidic channel --- parallelogram cross-section --- monodisperse droplet --- droplet generation
Choose an application
The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems. Heat and mass transfer are crucial processes in such systems, and they have attracted great interest in recent years. Tremendous effort, in terms of theoretical analyses, experimental measurements, numerical simulation, and practical applications, has been devoted to improve our understanding of complex heat and mass transfer processes and behaviors in such micro/nanosystems. This Special Issue is dedicated to showcasing recent advances in heat and mass transfer in micro- and nanosystems, with particular focus on the development of new models and theories, the employment of new experimental techniques, the adoption of new computational methods, and the design of novel micro/nanodevices. Thirteen articles have been published after peer-review evaluations, and these articles cover a wide spectrum of active research in the frontiers of micro/nanosystems.
Technology: general issues --- History of engineering & technology --- Darcy-Forchheimer theory --- nonlinear stretching --- nanofluid --- magnetohydrodynamics --- convective conditions --- carbon nanotubes --- thermal radiation --- porous cavity --- wavy channels --- nanofluids --- forced convection --- heat enhancement --- pressure drop --- mesh model --- microfluidic --- flow distributions --- fluid network --- microchannel --- heat transfer enhancement --- numerical simulation --- monodisperse droplet generation --- satellite droplets --- piezoelectric method --- droplet coalescence --- lattice Boltzmann method --- inertial migration --- Poiseuille flow --- pulsatile velocity --- loop heat pipe --- deionized water --- two-phase flow --- visualization --- heat transfer experiment --- heat transfer --- porous media --- pore-scale modeling --- boundary condition --- thermal conductivity --- porosity --- conjugate interface --- aspect ratio --- Maxwell nanofluid --- Darcy–Forchheimer model --- chemical reaction --- Brownian diffusion --- wearable device --- microfluidic chip --- sweat collecting --- microfluidics --- liquid metal --- measurement --- temperature monitoring --- PCR --- pin-fins --- wavy pin-fins channel --- performance criterion --- friction factor --- n/a --- Darcy-Forchheimer model
Choose an application
The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems. Heat and mass transfer are crucial processes in such systems, and they have attracted great interest in recent years. Tremendous effort, in terms of theoretical analyses, experimental measurements, numerical simulation, and practical applications, has been devoted to improve our understanding of complex heat and mass transfer processes and behaviors in such micro/nanosystems. This Special Issue is dedicated to showcasing recent advances in heat and mass transfer in micro- and nanosystems, with particular focus on the development of new models and theories, the employment of new experimental techniques, the adoption of new computational methods, and the design of novel micro/nanodevices. Thirteen articles have been published after peer-review evaluations, and these articles cover a wide spectrum of active research in the frontiers of micro/nanosystems.
Darcy-Forchheimer theory --- nonlinear stretching --- nanofluid --- magnetohydrodynamics --- convective conditions --- carbon nanotubes --- thermal radiation --- porous cavity --- wavy channels --- nanofluids --- forced convection --- heat enhancement --- pressure drop --- mesh model --- microfluidic --- flow distributions --- fluid network --- microchannel --- heat transfer enhancement --- numerical simulation --- monodisperse droplet generation --- satellite droplets --- piezoelectric method --- droplet coalescence --- lattice Boltzmann method --- inertial migration --- Poiseuille flow --- pulsatile velocity --- loop heat pipe --- deionized water --- two-phase flow --- visualization --- heat transfer experiment --- heat transfer --- porous media --- pore-scale modeling --- boundary condition --- thermal conductivity --- porosity --- conjugate interface --- aspect ratio --- Maxwell nanofluid --- Darcy–Forchheimer model --- chemical reaction --- Brownian diffusion --- wearable device --- microfluidic chip --- sweat collecting --- microfluidics --- liquid metal --- measurement --- temperature monitoring --- PCR --- pin-fins --- wavy pin-fins channel --- performance criterion --- friction factor --- n/a --- Darcy-Forchheimer model
Choose an application
The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems. Heat and mass transfer are crucial processes in such systems, and they have attracted great interest in recent years. Tremendous effort, in terms of theoretical analyses, experimental measurements, numerical simulation, and practical applications, has been devoted to improve our understanding of complex heat and mass transfer processes and behaviors in such micro/nanosystems. This Special Issue is dedicated to showcasing recent advances in heat and mass transfer in micro- and nanosystems, with particular focus on the development of new models and theories, the employment of new experimental techniques, the adoption of new computational methods, and the design of novel micro/nanodevices. Thirteen articles have been published after peer-review evaluations, and these articles cover a wide spectrum of active research in the frontiers of micro/nanosystems.
Technology: general issues --- History of engineering & technology --- Darcy-Forchheimer theory --- nonlinear stretching --- nanofluid --- magnetohydrodynamics --- convective conditions --- carbon nanotubes --- thermal radiation --- porous cavity --- wavy channels --- nanofluids --- forced convection --- heat enhancement --- pressure drop --- mesh model --- microfluidic --- flow distributions --- fluid network --- microchannel --- heat transfer enhancement --- numerical simulation --- monodisperse droplet generation --- satellite droplets --- piezoelectric method --- droplet coalescence --- lattice Boltzmann method --- inertial migration --- Poiseuille flow --- pulsatile velocity --- loop heat pipe --- deionized water --- two-phase flow --- visualization --- heat transfer experiment --- heat transfer --- porous media --- pore-scale modeling --- boundary condition --- thermal conductivity --- porosity --- conjugate interface --- aspect ratio --- Maxwell nanofluid --- Darcy-Forchheimer model --- chemical reaction --- Brownian diffusion --- wearable device --- microfluidic chip --- sweat collecting --- microfluidics --- liquid metal --- measurement --- temperature monitoring --- PCR --- pin-fins --- wavy pin-fins channel --- performance criterion --- friction factor
Listing 1 - 6 of 6 |
Sort by
|