Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Rumen --- Rumen --- Rumen digestion --- Rumen digestion --- Fermentation --- Fermentation --- antibiotics --- antibiotics --- microbial flora --- microbial flora --- Wethers --- Wethers --- rations --- rations --- Monensin --- Monensin
Choose an application
Essential oils extracted by the distillation or hydrodistillation of aromatic plants are a complex mixture of volatile compounds with several biological activities. Their efficacy as antimicrobial agents is related to the activity of several natural compounds belonging to different chemical families that can act both in synergy with each other and with other antibiotics. The antibiotic resistance detected among pathogens has been quickly increasing in recent years, and the control of some of these microorganisms is becoming a planetary emergency for human and animal health. The control of the microbial growth is a problem of great importance also for the food industry (food deterioration and shelf life extension) and for the world of cultural heritage (indoor and outdoor phenomena of biodeterioration). Essential oils can play an important role in this scenario, due their recognized broad-spectrum antimicrobial activity. Therefore, the main subject of this Special Issue includes an essential oil-based approach to control microrganisms in areas such as human and veterinary medicine, entomology, food industry and agriculture. In addition, the chemical composition of essential oils from endemic and rare medicinal/aromatic plants, nanoformulations of essential oils, applications in human and veterinary medicine and its use as animal feeding supplements are topics covered in this Special Issue
Technology: general issues --- extracellular polymeric substance matrix --- cellulose synthesis --- enzyme inhibition --- essential oils --- Boswellia sacra --- frankincense essential oil --- GC/MS analysis --- antimicrobial activity --- Staphylococcus aureus --- Pseudomonas aeruginosa --- Propionibacterium acnes --- Candida albicans --- Malassezia furfur --- lamb --- carvacrol --- monensin --- meat tenderness --- TBARS --- essential oil --- genetic --- RAPD --- thyme --- Thymus quinquecostatus --- Thymus vulgaris --- Penicillium rubens --- growth inhibition --- RNA microarray --- gene expression --- metabolic pathway analysis --- Ferula --- GC --- chemometrics --- antioxidant activity --- Acinetobacter baumannii --- MDR --- biofilm --- antimicrobial --- Pimenta --- Myrtaceae --- wound infection --- eugenol --- 1,8-cineole --- GC/MS --- Salmonella --- Origanum vulgare --- ciprofloxacin --- poultry farms --- pig farms --- Staphylococcus spp. --- human semen --- antimicrobial resistance --- rosewood --- linalool --- marine bacteria --- ABTS --- Trypanosoma cruzi --- cytotoxicity --- nitrite --- nitric oxide --- antifungal activity --- nanoencapsulation --- poly(ε-caprolactone) --- Thymus capitatus --- Satureja montana --- Lavandula angustifolia --- Lavandula intermedia --- Origanum hirtum --- Monarda didyma --- Monarda fistulosa --- Alternaria alternata --- cucurbits --- Cymbopogon citratus --- GC-MS --- Stagonosporopsis cucurbitacearum --- n/a
Choose an application
Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.
ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods
Choose an application
Essential oils extracted by the distillation or hydrodistillation of aromatic plants are a complex mixture of volatile compounds with several biological activities. Their efficacy as antimicrobial agents is related to the activity of several natural compounds belonging to different chemical families that can act both in synergy with each other and with other antibiotics. The antibiotic resistance detected among pathogens has been quickly increasing in recent years, and the control of some of these microorganisms is becoming a planetary emergency for human and animal health. The control of the microbial growth is a problem of great importance also for the food industry (food deterioration and shelf life extension) and for the world of cultural heritage (indoor and outdoor phenomena of biodeterioration). Essential oils can play an important role in this scenario, due their recognized broad-spectrum antimicrobial activity. Therefore, the main subject of this Special Issue includes an essential oil-based approach to control microrganisms in areas such as human and veterinary medicine, entomology, food industry and agriculture. In addition, the chemical composition of essential oils from endemic and rare medicinal/aromatic plants, nanoformulations of essential oils, applications in human and veterinary medicine and its use as animal feeding supplements are topics covered in this Special Issue
extracellular polymeric substance matrix --- cellulose synthesis --- enzyme inhibition --- essential oils --- Boswellia sacra --- frankincense essential oil --- GC/MS analysis --- antimicrobial activity --- Staphylococcus aureus --- Pseudomonas aeruginosa --- Propionibacterium acnes --- Candida albicans --- Malassezia furfur --- lamb --- carvacrol --- monensin --- meat tenderness --- TBARS --- essential oil --- genetic --- RAPD --- thyme --- Thymus quinquecostatus --- Thymus vulgaris --- Penicillium rubens --- growth inhibition --- RNA microarray --- gene expression --- metabolic pathway analysis --- Ferula --- GC --- chemometrics --- antioxidant activity --- Acinetobacter baumannii --- MDR --- biofilm --- antimicrobial --- Pimenta --- Myrtaceae --- wound infection --- eugenol --- 1,8-cineole --- GC/MS --- Salmonella --- Origanum vulgare --- ciprofloxacin --- poultry farms --- pig farms --- Staphylococcus spp. --- human semen --- antimicrobial resistance --- rosewood --- linalool --- marine bacteria --- ABTS --- Trypanosoma cruzi --- cytotoxicity --- nitrite --- nitric oxide --- antifungal activity --- nanoencapsulation --- poly(ε-caprolactone) --- Thymus capitatus --- Satureja montana --- Lavandula angustifolia --- Lavandula intermedia --- Origanum hirtum --- Monarda didyma --- Monarda fistulosa --- Alternaria alternata --- cucurbits --- Cymbopogon citratus --- GC-MS --- Stagonosporopsis cucurbitacearum --- n/a
Choose an application
Essential oils extracted by the distillation or hydrodistillation of aromatic plants are a complex mixture of volatile compounds with several biological activities. Their efficacy as antimicrobial agents is related to the activity of several natural compounds belonging to different chemical families that can act both in synergy with each other and with other antibiotics. The antibiotic resistance detected among pathogens has been quickly increasing in recent years, and the control of some of these microorganisms is becoming a planetary emergency for human and animal health. The control of the microbial growth is a problem of great importance also for the food industry (food deterioration and shelf life extension) and for the world of cultural heritage (indoor and outdoor phenomena of biodeterioration). Essential oils can play an important role in this scenario, due their recognized broad-spectrum antimicrobial activity. Therefore, the main subject of this Special Issue includes an essential oil-based approach to control microrganisms in areas such as human and veterinary medicine, entomology, food industry and agriculture. In addition, the chemical composition of essential oils from endemic and rare medicinal/aromatic plants, nanoformulations of essential oils, applications in human and veterinary medicine and its use as animal feeding supplements are topics covered in this Special Issue
Technology: general issues --- extracellular polymeric substance matrix --- cellulose synthesis --- enzyme inhibition --- essential oils --- Boswellia sacra --- frankincense essential oil --- GC/MS analysis --- antimicrobial activity --- Staphylococcus aureus --- Pseudomonas aeruginosa --- Propionibacterium acnes --- Candida albicans --- Malassezia furfur --- lamb --- carvacrol --- monensin --- meat tenderness --- TBARS --- essential oil --- genetic --- RAPD --- thyme --- Thymus quinquecostatus --- Thymus vulgaris --- Penicillium rubens --- growth inhibition --- RNA microarray --- gene expression --- metabolic pathway analysis --- Ferula --- GC --- chemometrics --- antioxidant activity --- Acinetobacter baumannii --- MDR --- biofilm --- antimicrobial --- Pimenta --- Myrtaceae --- wound infection --- eugenol --- 1,8-cineole --- GC/MS --- Salmonella --- Origanum vulgare --- ciprofloxacin --- poultry farms --- pig farms --- Staphylococcus spp. --- human semen --- antimicrobial resistance --- rosewood --- linalool --- marine bacteria --- ABTS --- Trypanosoma cruzi --- cytotoxicity --- nitrite --- nitric oxide --- antifungal activity --- nanoencapsulation --- poly(ε-caprolactone) --- Thymus capitatus --- Satureja montana --- Lavandula angustifolia --- Lavandula intermedia --- Origanum hirtum --- Monarda didyma --- Monarda fistulosa --- Alternaria alternata --- cucurbits --- Cymbopogon citratus --- GC-MS --- Stagonosporopsis cucurbitacearum --- extracellular polymeric substance matrix --- cellulose synthesis --- enzyme inhibition --- essential oils --- Boswellia sacra --- frankincense essential oil --- GC/MS analysis --- antimicrobial activity --- Staphylococcus aureus --- Pseudomonas aeruginosa --- Propionibacterium acnes --- Candida albicans --- Malassezia furfur --- lamb --- carvacrol --- monensin --- meat tenderness --- TBARS --- essential oil --- genetic --- RAPD --- thyme --- Thymus quinquecostatus --- Thymus vulgaris --- Penicillium rubens --- growth inhibition --- RNA microarray --- gene expression --- metabolic pathway analysis --- Ferula --- GC --- chemometrics --- antioxidant activity --- Acinetobacter baumannii --- MDR --- biofilm --- antimicrobial --- Pimenta --- Myrtaceae --- wound infection --- eugenol --- 1,8-cineole --- GC/MS --- Salmonella --- Origanum vulgare --- ciprofloxacin --- poultry farms --- pig farms --- Staphylococcus spp. --- human semen --- antimicrobial resistance --- rosewood --- linalool --- marine bacteria --- ABTS --- Trypanosoma cruzi --- cytotoxicity --- nitrite --- nitric oxide --- antifungal activity --- nanoencapsulation --- poly(ε-caprolactone) --- Thymus capitatus --- Satureja montana --- Lavandula angustifolia --- Lavandula intermedia --- Origanum hirtum --- Monarda didyma --- Monarda fistulosa --- Alternaria alternata --- cucurbits --- Cymbopogon citratus --- GC-MS --- Stagonosporopsis cucurbitacearum
Choose an application
Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.
Research & information: general --- Environmental economics --- ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods --- ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods
Listing 1 - 6 of 6 |
Sort by
|