Listing 1 - 8 of 8 |
Sort by
|
Choose an application
The introduction of metal AM processes in such industrial sectors as the aerospace, automotive, defense, jewelry, medical and tool-making fields, has led to a significant reduction in waste material and in the lead times of the components, innovative designs with higher strength, lower weight, and fewer potential failure points from joining features. This Special Issue on “Additive Manufacturing (AM) of Metallic Alloys” contains a mixture of review articles and original contributions on some problems that limit the wider uptake and exploitation of metals in AM.
History of engineering & technology --- design for additive manufacturing (DfAM) --- displacements --- laser powder bed fusion (L-PBF) --- manufacturing constraints --- stiffness --- costs --- melting of a powder bed --- laser welding --- optical diagnostics --- molten pool --- temperature field --- residual stresses --- electrochemical additive manufacturing --- fountain pen feed system --- metal 3D printer --- residual stress prediction --- IN718 --- experimental measurement of residual stress --- additive manufacturing --- support structure --- Powder Bed Fusion --- titanium alloy --- Ti-6Al-4V --- fracture behavior --- mechanical properties --- L-PBF --- in situ sensing --- quality assurance --- machine learning --- roughness --- electron beam melting (EBM) --- surface texture --- lack of fusion --- part quality --- Ti6Al4V --- metal additive manufacturing --- tempered --- ausrolled nanobainite --- microstructures --- n/a
Choose an application
The introduction of metal AM processes in such industrial sectors as the aerospace, automotive, defense, jewelry, medical and tool-making fields, has led to a significant reduction in waste material and in the lead times of the components, innovative designs with higher strength, lower weight, and fewer potential failure points from joining features. This Special Issue on “Additive Manufacturing (AM) of Metallic Alloys” contains a mixture of review articles and original contributions on some problems that limit the wider uptake and exploitation of metals in AM.
design for additive manufacturing (DfAM) --- displacements --- laser powder bed fusion (L-PBF) --- manufacturing constraints --- stiffness --- costs --- melting of a powder bed --- laser welding --- optical diagnostics --- molten pool --- temperature field --- residual stresses --- electrochemical additive manufacturing --- fountain pen feed system --- metal 3D printer --- residual stress prediction --- IN718 --- experimental measurement of residual stress --- additive manufacturing --- support structure --- Powder Bed Fusion --- titanium alloy --- Ti-6Al-4V --- fracture behavior --- mechanical properties --- L-PBF --- in situ sensing --- quality assurance --- machine learning --- roughness --- electron beam melting (EBM) --- surface texture --- lack of fusion --- part quality --- Ti6Al4V --- metal additive manufacturing --- tempered --- ausrolled nanobainite --- microstructures --- n/a
Choose an application
The introduction of metal AM processes in such industrial sectors as the aerospace, automotive, defense, jewelry, medical and tool-making fields, has led to a significant reduction in waste material and in the lead times of the components, innovative designs with higher strength, lower weight, and fewer potential failure points from joining features. This Special Issue on “Additive Manufacturing (AM) of Metallic Alloys” contains a mixture of review articles and original contributions on some problems that limit the wider uptake and exploitation of metals in AM.
History of engineering & technology --- design for additive manufacturing (DfAM) --- displacements --- laser powder bed fusion (L-PBF) --- manufacturing constraints --- stiffness --- costs --- melting of a powder bed --- laser welding --- optical diagnostics --- molten pool --- temperature field --- residual stresses --- electrochemical additive manufacturing --- fountain pen feed system --- metal 3D printer --- residual stress prediction --- IN718 --- experimental measurement of residual stress --- additive manufacturing --- support structure --- Powder Bed Fusion --- titanium alloy --- Ti-6Al-4V --- fracture behavior --- mechanical properties --- L-PBF --- in situ sensing --- quality assurance --- machine learning --- roughness --- electron beam melting (EBM) --- surface texture --- lack of fusion --- part quality --- Ti6Al4V --- metal additive manufacturing --- tempered --- ausrolled nanobainite --- microstructures --- design for additive manufacturing (DfAM) --- displacements --- laser powder bed fusion (L-PBF) --- manufacturing constraints --- stiffness --- costs --- melting of a powder bed --- laser welding --- optical diagnostics --- molten pool --- temperature field --- residual stresses --- electrochemical additive manufacturing --- fountain pen feed system --- metal 3D printer --- residual stress prediction --- IN718 --- experimental measurement of residual stress --- additive manufacturing --- support structure --- Powder Bed Fusion --- titanium alloy --- Ti-6Al-4V --- fracture behavior --- mechanical properties --- L-PBF --- in situ sensing --- quality assurance --- machine learning --- roughness --- electron beam melting (EBM) --- surface texture --- lack of fusion --- part quality --- Ti6Al4V --- metal additive manufacturing --- tempered --- ausrolled nanobainite --- microstructures
Choose an application
Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.
microstructure --- slag --- crystallographic texture --- epoxy solder --- additive manufacturing --- substrate preheating --- thermosetting epoxy resin --- AlSi10Mg alloy --- impact --- residual stress --- stability lobe diagram --- laves phase --- vanadium --- selective laser melting (SLM) --- molten pool dynamic behavior --- scanning strategy --- pulse frequency --- thin-walled weak rigidity parts --- scanning --- aluminum --- elastic abrasive --- 2219 aluminum alloy --- Powder bed --- ABS --- laser energy density --- equivalent processing model --- composition --- numerical analysis --- scanning electron microscopy (SEM) --- Hastelloy X alloy --- regular mixing --- texture evolution --- graphene nano-sheets (GNSs) --- Electron Beam Melting --- powder bed fusion --- microstructural evolution --- Mg content --- cement --- bulk metallic glasses --- grain refinement --- Taguchi --- intermediate thermo-mechanical treatment --- valorization --- microstructure and properties --- arc current --- high computational efficiency --- powder properties --- dynamic characteristics --- composite materials --- CuAl2 phase --- rapid solidification --- magnetizer --- M300 mold steel --- circular economy --- titanium alloy --- Al–5Si alloy --- Al–Mg–Si alloy --- ultrasonic bonding --- water absorption --- disc brake --- support strategy --- inoculation --- arc additive manufacture --- 3D metal printing --- ultrafast laser --- Hot Isostatic Pressure --- arc additive manufacturing --- continuous carbon fiber --- performance characteristics --- process-damping --- intermetallic compound (IMC) --- interfaces --- direct metal laser sintering --- porosity --- nickel-based superalloy --- element segregation --- hydrophobicity --- H13 tool steel --- Cu50Zr43Al7 --- metal powders --- parameter optimization --- side spatters --- powder packing --- 3D printing --- precipitates --- n/a --- simulation --- laser cladding deposition --- melt pool size --- quenching rate --- Al–Mg alloy --- tailored properties --- workpiece scale --- fatigue --- laser cladding --- Ti-6Al-4V --- deformation --- quality of the as-built parts --- model --- milling --- wire feeding additive manufacturing --- martensitic transformation --- ball milling --- Inconel 718 --- ablation --- in-process temperature in MPBAM --- subgranular dendrites --- porosity reduction --- femtosecond --- paint bake-hardening --- Al6061 --- defects --- continuous dynamic recrystallization --- wear --- Additive manufacturing --- volumetric heat source --- Ti6Al4V alloy --- AlSi10Mg --- radial grooves --- GH4169 --- temperature and stress fields --- laser powder bed fusion --- metallic glasses --- numerical simulation --- latent heat --- divisional scanning --- wire lateral feeding --- laser powder bed fusion (LPBF) --- heat treatment --- thermal behaviour --- fused filament fabrication --- microstructures --- thermal conductivity --- 12CrNi2 alloy steel powder --- tensile strength --- hot stamping steel blanks --- multi-laser manufacturing --- aluminum alloys --- additive surface structuring --- parts design --- process parameters --- thermal stress analysis --- SLM process parameters --- nickel alloys --- Al–Si --- powder flowability --- laser power absorption --- refractory high-entropy alloy --- localized inductive heating --- mechanical properties --- selective laser melting --- storage energy --- concrete --- mechanical property --- gray cast iron --- constitutive model --- analytical modeling --- hot deformation --- epitaxial growth --- design --- flowability --- amorphous alloy --- PSO-BP neural network algorithm --- molten pool evolution --- microhardness measurement --- macro defects --- thermal capillary effects --- finite element analysis --- dynamic properties --- WxNbMoTa --- properties --- Al-5Si alloy --- Al-Mg-Si alloy --- Al-Mg alloy --- Al-Si
Choose an application
Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.
microstructure --- slag --- crystallographic texture --- epoxy solder --- additive manufacturing --- substrate preheating --- thermosetting epoxy resin --- AlSi10Mg alloy --- impact --- residual stress --- stability lobe diagram --- laves phase --- vanadium --- selective laser melting (SLM) --- molten pool dynamic behavior --- scanning strategy --- pulse frequency --- thin-walled weak rigidity parts --- scanning --- aluminum --- elastic abrasive --- 2219 aluminum alloy --- Powder bed --- ABS --- laser energy density --- equivalent processing model --- composition --- numerical analysis --- scanning electron microscopy (SEM) --- Hastelloy X alloy --- regular mixing --- texture evolution --- graphene nano-sheets (GNSs) --- Electron Beam Melting --- powder bed fusion --- microstructural evolution --- Mg content --- cement --- bulk metallic glasses --- grain refinement --- Taguchi --- intermediate thermo-mechanical treatment --- valorization --- microstructure and properties --- arc current --- high computational efficiency --- powder properties --- dynamic characteristics --- composite materials --- CuAl2 phase --- rapid solidification --- magnetizer --- M300 mold steel --- circular economy --- titanium alloy --- Al–5Si alloy --- Al–Mg–Si alloy --- ultrasonic bonding --- water absorption --- disc brake --- support strategy --- inoculation --- arc additive manufacture --- 3D metal printing --- ultrafast laser --- Hot Isostatic Pressure --- arc additive manufacturing --- continuous carbon fiber --- performance characteristics --- process-damping --- intermetallic compound (IMC) --- interfaces --- direct metal laser sintering --- porosity --- nickel-based superalloy --- element segregation --- hydrophobicity --- H13 tool steel --- Cu50Zr43Al7 --- metal powders --- parameter optimization --- side spatters --- powder packing --- 3D printing --- precipitates --- n/a --- simulation --- laser cladding deposition --- melt pool size --- quenching rate --- Al–Mg alloy --- tailored properties --- workpiece scale --- fatigue --- laser cladding --- Ti-6Al-4V --- deformation --- quality of the as-built parts --- model --- milling --- wire feeding additive manufacturing --- martensitic transformation --- ball milling --- Inconel 718 --- ablation --- in-process temperature in MPBAM --- subgranular dendrites --- porosity reduction --- femtosecond --- paint bake-hardening --- Al6061 --- defects --- continuous dynamic recrystallization --- wear --- Additive manufacturing --- volumetric heat source --- Ti6Al4V alloy --- AlSi10Mg --- radial grooves --- GH4169 --- temperature and stress fields --- laser powder bed fusion --- metallic glasses --- numerical simulation --- latent heat --- divisional scanning --- wire lateral feeding --- laser powder bed fusion (LPBF) --- heat treatment --- thermal behaviour --- fused filament fabrication --- microstructures --- thermal conductivity --- 12CrNi2 alloy steel powder --- tensile strength --- hot stamping steel blanks --- multi-laser manufacturing --- aluminum alloys --- additive surface structuring --- parts design --- process parameters --- thermal stress analysis --- SLM process parameters --- nickel alloys --- Al–Si --- powder flowability --- laser power absorption --- refractory high-entropy alloy --- localized inductive heating --- mechanical properties --- selective laser melting --- storage energy --- concrete --- mechanical property --- gray cast iron --- constitutive model --- analytical modeling --- hot deformation --- epitaxial growth --- design --- flowability --- amorphous alloy --- PSO-BP neural network algorithm --- molten pool evolution --- microhardness measurement --- macro defects --- thermal capillary effects --- finite element analysis --- dynamic properties --- WxNbMoTa --- properties --- Al-5Si alloy --- Al-Mg-Si alloy --- Al-Mg alloy --- Al-Si
Choose an application
Sensors are the eyes or/and ears of an intelligent system, such as UAV, AGV and robots. With the development of material, signal processing, and multidisciplinary interactions, more and more smart sensors are proposed and fabricated under increasing demands for homes, the industry, and military fields. Networks of sensors will be able to enhance the ability to obtain huge amounts of information (big data) and improve precision, which also mirrors the developmental tendency of modern sensors. Moreover, artificial intelligence is a novel impetus for sensors and networks, which gets sensors to learn and think and feed more efficient results back. This book includes new research results from academia and industry, on the subject of “Smart Sensors and Networks”, especially sensing technologies utilizing Artificial Intelligence. The topics include: smart sensors biosensors sensor network sensor data fusion artificial intelligence deep learning mechatronics devices for sensors applications of sensors for robotics and mechatronics devices
History of engineering & technology --- microelectromechanical systems --- inertial measurement unit --- long short term memory recurrent neural networks --- artificial intelligence --- deep learning --- CNN --- LSTM --- CO2 welding --- molten pool --- online monitoring --- mechanical sensor --- self-adaptiveness --- ankle-foot exoskeleton --- walking assistance --- visual tracking --- correlation filter --- color histogram --- adaptive hedge algorithm --- scenario generation --- autonomous vehicle --- smart sensor and device --- wireless sensor networks --- task assignment --- distributed --- reliable --- energy-efficient --- audification --- sensor --- visualization --- speech to text --- text to speech --- HF-OTH radar --- AIS --- radar tracking --- data fusion --- fuzzy functional dependencies --- maritime surveillance --- surgical robot end-effector --- clamping force estimation --- joint torque disturbance observer --- PSO-BPNN --- cable tension measurement --- queue length --- roadside sensor --- vehicle detection --- adverse weather --- roadside LiDAR --- data processing --- air pollution --- atmospheric data --- IoT --- machine learning --- RNN --- Sensors --- smart cities --- traffic flow --- traffic forecasting --- wireless sensor network --- fruit condition monitoring --- artificial neural network --- ethylene gas --- banana ripening --- unidimensional ACGAN --- signal recognition --- data augmentation --- link establishment behaviors --- DenseNet --- short-wave radio station --- landing gear --- adaptive landing --- vehicle classification --- FBG --- smart sensors --- outlier detection --- local outlier factor --- data streams --- air quality monitoring --- evacuation path --- multi-story multi-exit building --- temperature sensors --- multi-time-slots planning --- optimization --- microelectromechanical systems --- inertial measurement unit --- long short term memory recurrent neural networks --- artificial intelligence --- deep learning --- CNN --- LSTM --- CO2 welding --- molten pool --- online monitoring --- mechanical sensor --- self-adaptiveness --- ankle-foot exoskeleton --- walking assistance --- visual tracking --- correlation filter --- color histogram --- adaptive hedge algorithm --- scenario generation --- autonomous vehicle --- smart sensor and device --- wireless sensor networks --- task assignment --- distributed --- reliable --- energy-efficient --- audification --- sensor --- visualization --- speech to text --- text to speech --- HF-OTH radar --- AIS --- radar tracking --- data fusion --- fuzzy functional dependencies --- maritime surveillance --- surgical robot end-effector --- clamping force estimation --- joint torque disturbance observer --- PSO-BPNN --- cable tension measurement --- queue length --- roadside sensor --- vehicle detection --- adverse weather --- roadside LiDAR --- data processing --- air pollution --- atmospheric data --- IoT --- machine learning --- RNN --- Sensors --- smart cities --- traffic flow --- traffic forecasting --- wireless sensor network --- fruit condition monitoring --- artificial neural network --- ethylene gas --- banana ripening --- unidimensional ACGAN --- signal recognition --- data augmentation --- link establishment behaviors --- DenseNet --- short-wave radio station --- landing gear --- adaptive landing --- vehicle classification --- FBG --- smart sensors --- outlier detection --- local outlier factor --- data streams --- air quality monitoring --- evacuation path --- multi-story multi-exit building --- temperature sensors --- multi-time-slots planning --- optimization
Choose an application
Sensors are the eyes or/and ears of an intelligent system, such as UAV, AGV and robots. With the development of material, signal processing, and multidisciplinary interactions, more and more smart sensors are proposed and fabricated under increasing demands for homes, the industry, and military fields. Networks of sensors will be able to enhance the ability to obtain huge amounts of information (big data) and improve precision, which also mirrors the developmental tendency of modern sensors. Moreover, artificial intelligence is a novel impetus for sensors and networks, which gets sensors to learn and think and feed more efficient results back. This book includes new research results from academia and industry, on the subject of “Smart Sensors and Networks”, especially sensing technologies utilizing Artificial Intelligence. The topics include: smart sensors biosensors sensor network sensor data fusion artificial intelligence deep learning mechatronics devices for sensors applications of sensors for robotics and mechatronics devices
History of engineering & technology --- microelectromechanical systems --- inertial measurement unit --- long short term memory recurrent neural networks --- artificial intelligence --- deep learning --- CNN --- LSTM --- CO2 welding --- molten pool --- online monitoring --- mechanical sensor --- self-adaptiveness --- ankle-foot exoskeleton --- walking assistance --- visual tracking --- correlation filter --- color histogram --- adaptive hedge algorithm --- scenario generation --- autonomous vehicle --- smart sensor and device --- wireless sensor networks --- task assignment --- distributed --- reliable --- energy-efficient --- audification --- sensor --- visualization --- speech to text --- text to speech --- HF-OTH radar --- AIS --- radar tracking --- data fusion --- fuzzy functional dependencies --- maritime surveillance --- surgical robot end-effector --- clamping force estimation --- joint torque disturbance observer --- PSO-BPNN --- cable tension measurement --- queue length --- roadside sensor --- vehicle detection --- adverse weather --- roadside LiDAR --- data processing --- air pollution --- atmospheric data --- IoT --- machine learning --- RNN --- Sensors --- smart cities --- traffic flow --- traffic forecasting --- wireless sensor network --- fruit condition monitoring --- artificial neural network --- ethylene gas --- banana ripening --- unidimensional ACGAN --- signal recognition --- data augmentation --- link establishment behaviors --- DenseNet --- short-wave radio station --- landing gear --- adaptive landing --- vehicle classification --- FBG --- smart sensors --- outlier detection --- local outlier factor --- data streams --- air quality monitoring --- n/a --- evacuation path --- multi-story multi-exit building --- temperature sensors --- multi-time-slots planning --- optimization
Choose an application
Sensors are the eyes or/and ears of an intelligent system, such as UAV, AGV and robots. With the development of material, signal processing, and multidisciplinary interactions, more and more smart sensors are proposed and fabricated under increasing demands for homes, the industry, and military fields. Networks of sensors will be able to enhance the ability to obtain huge amounts of information (big data) and improve precision, which also mirrors the developmental tendency of modern sensors. Moreover, artificial intelligence is a novel impetus for sensors and networks, which gets sensors to learn and think and feed more efficient results back. This book includes new research results from academia and industry, on the subject of “Smart Sensors and Networks”, especially sensing technologies utilizing Artificial Intelligence. The topics include: smart sensors biosensors sensor network sensor data fusion artificial intelligence deep learning mechatronics devices for sensors applications of sensors for robotics and mechatronics devices
microelectromechanical systems --- inertial measurement unit --- long short term memory recurrent neural networks --- artificial intelligence --- deep learning --- CNN --- LSTM --- CO2 welding --- molten pool --- online monitoring --- mechanical sensor --- self-adaptiveness --- ankle-foot exoskeleton --- walking assistance --- visual tracking --- correlation filter --- color histogram --- adaptive hedge algorithm --- scenario generation --- autonomous vehicle --- smart sensor and device --- wireless sensor networks --- task assignment --- distributed --- reliable --- energy-efficient --- audification --- sensor --- visualization --- speech to text --- text to speech --- HF-OTH radar --- AIS --- radar tracking --- data fusion --- fuzzy functional dependencies --- maritime surveillance --- surgical robot end-effector --- clamping force estimation --- joint torque disturbance observer --- PSO-BPNN --- cable tension measurement --- queue length --- roadside sensor --- vehicle detection --- adverse weather --- roadside LiDAR --- data processing --- air pollution --- atmospheric data --- IoT --- machine learning --- RNN --- Sensors --- smart cities --- traffic flow --- traffic forecasting --- wireless sensor network --- fruit condition monitoring --- artificial neural network --- ethylene gas --- banana ripening --- unidimensional ACGAN --- signal recognition --- data augmentation --- link establishment behaviors --- DenseNet --- short-wave radio station --- landing gear --- adaptive landing --- vehicle classification --- FBG --- smart sensors --- outlier detection --- local outlier factor --- data streams --- air quality monitoring --- n/a --- evacuation path --- multi-story multi-exit building --- temperature sensors --- multi-time-slots planning --- optimization
Listing 1 - 8 of 8 |
Sort by
|