Listing 1 - 6 of 6 |
Sort by
|
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
Research & information: general --- Physics --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- n/a
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- n/a
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
Research & information: general --- Physics --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage
Choose an application
In nuclear fusion technology, thermal-hydraulics is a key discipline employed in the design phase of the systems and components to demonstrate performance, and to ensure the reliability and their efficient and economical operation. ITER is in charge of investigating the transients of the engineering systems; this included safety analysis. The thermal-hydraulics is required for the design and analysis of the cooling and ancillary systems such as the blanket, the divertor, the cryogenic, and the balance of plant systems, as well as the tritium carrier, extraction and recovery systems. This Special Issue collects and documents the recent scientific advancements which include, but are not limited to: thermal-hydraulic analyses of systems and components, including magneto-hydrodynamics; safety investigations of systems and components; numerical models and code development and application; codes coupling methodology; code assessment and validation, including benchmarks; experimental infrastructures design and operation; experimental campaigns and investigations; scaling issue in experiments.
Computing & information technology --- Operating systems --- packing structure --- contact force --- porosity distribution --- tritium breeder pebble bed --- breeding blanket --- discrete element method --- DEMO --- primary heat transfer system --- balance of plant --- RELAP5 --- loss of flow accident --- once through steam generators --- DEMO-EU fusion reactor --- IFMIF-DONES facility --- lithium technology --- CFD --- thermo-fluid dynamics --- lead-lithium eutectic --- In-box LOCA --- HCLL TBS --- liquid metal blanket --- MHD benchmarking --- COMSOL multiphysics --- magneto-convection --- turbulent MHD --- large eddy simulations --- magnetohydrodynamics (MHD) --- MHD pressure drop --- system codes --- liquid metal technology --- WCLL BB --- small ESS --- transient --- Apros --- Magnetohydrodynamics --- heat transfer --- WCLL --- thermal hydraulic --- WLLC blanket --- CFETR --- wakes --- open channel flow --- experimental methods --- DONES --- fusion --- liquid lithium --- LOCA --- Melcor --- numeric coupling --- liquid metal blankets --- tritium --- corrosion --- convection --- turbulence --- WCLL blanket --- DCLL blanket --- WCLL-BB --- MELCOR --- PHTS --- safety analysis --- HCPB BB --- CRAFT --- blanket and divertor --- experiment plan --- water loop design --- DEMO blanket --- first wall --- ODS steel layer --- tungsten functionally graded coating --- experimental investigation --- EU-DEMO --- helium-cooled pebble bed --- thermal storage --- indirect coupled design --- energy balance --- power conversion system --- simulation --- gyrotron resonator --- multi-physic simulation --- thermal-hydraulics --- cooling --- mini-channels --- Raschig rings --- validation --- divertor --- plasma facing components --- thermal hydraulics --- SIMMER code --- RELAP5 code --- in-box LOCA --- WCLL breeding blanket --- LIFUS5/Mod3 --- packing structure --- contact force --- porosity distribution --- tritium breeder pebble bed --- breeding blanket --- discrete element method --- DEMO --- primary heat transfer system --- balance of plant --- RELAP5 --- loss of flow accident --- once through steam generators --- DEMO-EU fusion reactor --- IFMIF-DONES facility --- lithium technology --- CFD --- thermo-fluid dynamics --- lead-lithium eutectic --- In-box LOCA --- HCLL TBS --- liquid metal blanket --- MHD benchmarking --- COMSOL multiphysics --- magneto-convection --- turbulent MHD --- large eddy simulations --- magnetohydrodynamics (MHD) --- MHD pressure drop --- system codes --- liquid metal technology --- WCLL BB --- small ESS --- transient --- Apros --- Magnetohydrodynamics --- heat transfer --- WCLL --- thermal hydraulic --- WLLC blanket --- CFETR --- wakes --- open channel flow --- experimental methods --- DONES --- fusion --- liquid lithium --- LOCA --- Melcor --- numeric coupling --- liquid metal blankets --- tritium --- corrosion --- convection --- turbulence --- WCLL blanket --- DCLL blanket --- WCLL-BB --- MELCOR --- PHTS --- safety analysis --- HCPB BB --- CRAFT --- blanket and divertor --- experiment plan --- water loop design --- DEMO blanket --- first wall --- ODS steel layer --- tungsten functionally graded coating --- experimental investigation --- EU-DEMO --- helium-cooled pebble bed --- thermal storage --- indirect coupled design --- energy balance --- power conversion system --- simulation --- gyrotron resonator --- multi-physic simulation --- thermal-hydraulics --- cooling --- mini-channels --- Raschig rings --- validation --- divertor --- plasma facing components --- thermal hydraulics --- SIMMER code --- RELAP5 code --- in-box LOCA --- WCLL breeding blanket --- LIFUS5/Mod3
Choose an application
In nuclear fusion technology, thermal-hydraulics is a key discipline employed in the design phase of the systems and components to demonstrate performance, and to ensure the reliability and their efficient and economical operation. ITER is in charge of investigating the transients of the engineering systems; this included safety analysis. The thermal-hydraulics is required for the design and analysis of the cooling and ancillary systems such as the blanket, the divertor, the cryogenic, and the balance of plant systems, as well as the tritium carrier, extraction and recovery systems. This Special Issue collects and documents the recent scientific advancements which include, but are not limited to: thermal-hydraulic analyses of systems and components, including magneto-hydrodynamics; safety investigations of systems and components; numerical models and code development and application; codes coupling methodology; code assessment and validation, including benchmarks; experimental infrastructures design and operation; experimental campaigns and investigations; scaling issue in experiments.
Computing & information technology --- Operating systems --- packing structure --- contact force --- porosity distribution --- tritium breeder pebble bed --- breeding blanket --- discrete element method --- DEMO --- primary heat transfer system --- balance of plant --- RELAP5 --- loss of flow accident --- once through steam generators --- DEMO-EU fusion reactor --- IFMIF-DONES facility --- lithium technology --- CFD --- thermo-fluid dynamics --- lead-lithium eutectic --- In-box LOCA --- HCLL TBS --- liquid metal blanket --- MHD benchmarking --- COMSOL multiphysics --- magneto-convection --- turbulent MHD --- large eddy simulations --- magnetohydrodynamics (MHD) --- MHD pressure drop --- system codes --- liquid metal technology --- WCLL BB --- small ESS --- transient --- Apros --- Magnetohydrodynamics --- heat transfer --- WCLL --- thermal hydraulic --- WLLC blanket --- CFETR --- wakes --- open channel flow --- experimental methods --- DONES --- fusion --- liquid lithium --- LOCA --- Melcor --- numeric coupling --- liquid metal blankets --- tritium --- corrosion --- convection --- turbulence --- WCLL blanket --- DCLL blanket --- WCLL-BB --- MELCOR --- PHTS --- safety analysis --- HCPB BB --- CRAFT --- blanket and divertor --- experiment plan --- water loop design --- DEMO blanket --- first wall --- ODS steel layer --- tungsten functionally graded coating --- experimental investigation --- EU-DEMO --- helium-cooled pebble bed --- thermal storage --- indirect coupled design --- energy balance --- power conversion system --- simulation --- gyrotron resonator --- multi-physic simulation --- thermal-hydraulics --- cooling --- mini-channels --- Raschig rings --- validation --- divertor --- plasma facing components --- thermal hydraulics --- SIMMER code --- RELAP5 code --- in-box LOCA --- WCLL breeding blanket --- LIFUS5/Mod3
Choose an application
In nuclear fusion technology, thermal-hydraulics is a key discipline employed in the design phase of the systems and components to demonstrate performance, and to ensure the reliability and their efficient and economical operation. ITER is in charge of investigating the transients of the engineering systems; this included safety analysis. The thermal-hydraulics is required for the design and analysis of the cooling and ancillary systems such as the blanket, the divertor, the cryogenic, and the balance of plant systems, as well as the tritium carrier, extraction and recovery systems. This Special Issue collects and documents the recent scientific advancements which include, but are not limited to: thermal-hydraulic analyses of systems and components, including magneto-hydrodynamics; safety investigations of systems and components; numerical models and code development and application; codes coupling methodology; code assessment and validation, including benchmarks; experimental infrastructures design and operation; experimental campaigns and investigations; scaling issue in experiments.
packing structure --- contact force --- porosity distribution --- tritium breeder pebble bed --- breeding blanket --- discrete element method --- DEMO --- primary heat transfer system --- balance of plant --- RELAP5 --- loss of flow accident --- once through steam generators --- DEMO-EU fusion reactor --- IFMIF-DONES facility --- lithium technology --- CFD --- thermo-fluid dynamics --- lead-lithium eutectic --- In-box LOCA --- HCLL TBS --- liquid metal blanket --- MHD benchmarking --- COMSOL multiphysics --- magneto-convection --- turbulent MHD --- large eddy simulations --- magnetohydrodynamics (MHD) --- MHD pressure drop --- system codes --- liquid metal technology --- WCLL BB --- small ESS --- transient --- Apros --- Magnetohydrodynamics --- heat transfer --- WCLL --- thermal hydraulic --- WLLC blanket --- CFETR --- wakes --- open channel flow --- experimental methods --- DONES --- fusion --- liquid lithium --- LOCA --- Melcor --- numeric coupling --- liquid metal blankets --- tritium --- corrosion --- convection --- turbulence --- WCLL blanket --- DCLL blanket --- WCLL-BB --- MELCOR --- PHTS --- safety analysis --- HCPB BB --- CRAFT --- blanket and divertor --- experiment plan --- water loop design --- DEMO blanket --- first wall --- ODS steel layer --- tungsten functionally graded coating --- experimental investigation --- EU-DEMO --- helium-cooled pebble bed --- thermal storage --- indirect coupled design --- energy balance --- power conversion system --- simulation --- gyrotron resonator --- multi-physic simulation --- thermal-hydraulics --- cooling --- mini-channels --- Raschig rings --- validation --- divertor --- plasma facing components --- thermal hydraulics --- SIMMER code --- RELAP5 code --- in-box LOCA --- WCLL breeding blanket --- LIFUS5/Mod3
Listing 1 - 6 of 6 |
Sort by
|