Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Elastic limit --- Tension --- Mild steel --- Elastic limit --- Tension --- Mild steel
Choose an application
The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.
Research & information: general --- corrosion --- reinforcements --- concrete --- slag --- LFS --- grounding grid --- metal corrosion --- topology detection --- corrosion detection --- nondestructive testing --- coating --- metallic bipolar plate --- PEMFC --- TiNb --- TiNbN --- brass --- chloride --- triazole derivatives --- poly(phenylene methylene) coatings --- PPM-related copolymer --- rheological additive-free polymer formulation --- AA2024 --- corrosion protection --- electrochemistry --- aluminum 7075 --- anodizing --- oil-impregnation --- corrosion resistance --- salt spray test --- Cerium oxide nanoparticles --- anti-reflection --- self-assembly --- microfluidics --- convective self-assembly --- corrosion inhibitor --- corrosion mechanism --- cysteine --- thin film --- C-Mnsteel --- corrosion inhibitors --- bio-copolymer --- starch --- glycerin --- mild steel --- EIS --- SEM --- Raman spectroscopy --- pitting corrosion --- synergistic effect --- n/a
Choose an application
Active (also called “smart”) coatings and thin films are defined as those that are capable of sensing their environment and appropriately responding to that external stimulus. This Special Issue “Active Organic and Organic-Inorganic Hybrid Coatings and Thin Films: Challenges, Developments, Perspectives” collected a series of papers that outline the current frontiers in the development of smart coatings and thin films for corrosion and other types of materials applications. The first four papers focus on novel discoveries on coatings with corrosion protection properties. These include environmentally-friendly polyurethane loaded with cerium nitrate corrosion inhibitor for mild steel protection, hot-pressed organic polymer coatings for the protection of pre-treated aluminum alloy surfaces exposed to NaCl aqueous solutions, functional epoxy coating with modified functional TiO2 for steel substrates protection, and hybrid composites against the thermo-oxidative corrosion of the metal parts of the internal combustion engines, turbines, and heaters. The next paper explores the potential of organic polymer/ceramic composite coatings to enhance the scratch resistance of typical floor laminates. The next three papers highlight other types of smart coatings and thin films, including low-temperature curable hybrid dielectric materials for field-effect transistors, bilayer antireflective coatings for optoelectronic devices, and organic polymers as the thin-film component for enthalpy exchanger systems in air conditioning applications. The final two papers focus on important research specific to coatings that serve as protection and preservation cultural heritage materials.
Research & information: general --- high-temperature coatings --- corrosion protection --- powder coatings --- scale inhibition --- anti-corrosion --- mesoporous TiO2 whiskers --- organic coatings --- mild steel --- waterborne polyurethane --- corrosion --- cerium nitrate --- coating --- HVAC --- SPEEK --- cross-linking --- INCA method --- thin membranes --- high DS --- refractive index --- deposition angle --- wavelength --- antireflective --- omnidirectional --- nanostructures --- thermal stability --- high pressure laminates (HPL) --- overlay --- alumina --- functionalization --- silane coupling agent --- scratch resistance --- scratch visibility --- scratch hardness --- organic thin-film transistors --- dielectric --- organosilicate --- copolymer --- poly(phenylene methylene), aluminum alloy --- AA2024 --- coatings by hot pressing --- additives --- fluorescence --- waterborne coatings --- batch miniemulsion --- weathering --- stone preservation --- coatings --- nanosilica --- nano-TiO2 --- nano-clay --- stone conservation --- wood protection
Choose an application
Active (also called “smart”) coatings and thin films are defined as those that are capable of sensing their environment and appropriately responding to that external stimulus. This Special Issue “Active Organic and Organic-Inorganic Hybrid Coatings and Thin Films: Challenges, Developments, Perspectives” collected a series of papers that outline the current frontiers in the development of smart coatings and thin films for corrosion and other types of materials applications. The first four papers focus on novel discoveries on coatings with corrosion protection properties. These include environmentally-friendly polyurethane loaded with cerium nitrate corrosion inhibitor for mild steel protection, hot-pressed organic polymer coatings for the protection of pre-treated aluminum alloy surfaces exposed to NaCl aqueous solutions, functional epoxy coating with modified functional TiO2 for steel substrates protection, and hybrid composites against the thermo-oxidative corrosion of the metal parts of the internal combustion engines, turbines, and heaters. The next paper explores the potential of organic polymer/ceramic composite coatings to enhance the scratch resistance of typical floor laminates. The next three papers highlight other types of smart coatings and thin films, including low-temperature curable hybrid dielectric materials for field-effect transistors, bilayer antireflective coatings for optoelectronic devices, and organic polymers as the thin-film component for enthalpy exchanger systems in air conditioning applications. The final two papers focus on important research specific to coatings that serve as protection and preservation cultural heritage materials.
high-temperature coatings --- corrosion protection --- powder coatings --- scale inhibition --- anti-corrosion --- mesoporous TiO2 whiskers --- organic coatings --- mild steel --- waterborne polyurethane --- corrosion --- cerium nitrate --- coating --- HVAC --- SPEEK --- cross-linking --- INCA method --- thin membranes --- high DS --- refractive index --- deposition angle --- wavelength --- antireflective --- omnidirectional --- nanostructures --- thermal stability --- high pressure laminates (HPL) --- overlay --- alumina --- functionalization --- silane coupling agent --- scratch resistance --- scratch visibility --- scratch hardness --- organic thin-film transistors --- dielectric --- organosilicate --- copolymer --- poly(phenylene methylene), aluminum alloy --- AA2024 --- coatings by hot pressing --- additives --- fluorescence --- waterborne coatings --- batch miniemulsion --- weathering --- stone preservation --- coatings --- nanosilica --- nano-TiO2 --- nano-clay --- stone conservation --- wood protection
Choose an application
The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.
corrosion --- reinforcements --- concrete --- slag --- LFS --- grounding grid --- metal corrosion --- topology detection --- corrosion detection --- nondestructive testing --- coating --- metallic bipolar plate --- PEMFC --- TiNb --- TiNbN --- brass --- chloride --- triazole derivatives --- poly(phenylene methylene) coatings --- PPM-related copolymer --- rheological additive-free polymer formulation --- AA2024 --- corrosion protection --- electrochemistry --- aluminum 7075 --- anodizing --- oil-impregnation --- corrosion resistance --- salt spray test --- Cerium oxide nanoparticles --- anti-reflection --- self-assembly --- microfluidics --- convective self-assembly --- corrosion inhibitor --- corrosion mechanism --- cysteine --- thin film --- C-Mnsteel --- corrosion inhibitors --- bio-copolymer --- starch --- glycerin --- mild steel --- EIS --- SEM --- Raman spectroscopy --- pitting corrosion --- synergistic effect --- n/a
Choose an application
The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences.
Research & information: general --- corrosion --- reinforcements --- concrete --- slag --- LFS --- grounding grid --- metal corrosion --- topology detection --- corrosion detection --- nondestructive testing --- coating --- metallic bipolar plate --- PEMFC --- TiNb --- TiNbN --- brass --- chloride --- triazole derivatives --- poly(phenylene methylene) coatings --- PPM-related copolymer --- rheological additive-free polymer formulation --- AA2024 --- corrosion protection --- electrochemistry --- aluminum 7075 --- anodizing --- oil-impregnation --- corrosion resistance --- salt spray test --- Cerium oxide nanoparticles --- anti-reflection --- self-assembly --- microfluidics --- convective self-assembly --- corrosion inhibitor --- corrosion mechanism --- cysteine --- thin film --- C-Mnsteel --- corrosion inhibitors --- bio-copolymer --- starch --- glycerin --- mild steel --- EIS --- SEM --- Raman spectroscopy --- pitting corrosion --- synergistic effect --- corrosion --- reinforcements --- concrete --- slag --- LFS --- grounding grid --- metal corrosion --- topology detection --- corrosion detection --- nondestructive testing --- coating --- metallic bipolar plate --- PEMFC --- TiNb --- TiNbN --- brass --- chloride --- triazole derivatives --- poly(phenylene methylene) coatings --- PPM-related copolymer --- rheological additive-free polymer formulation --- AA2024 --- corrosion protection --- electrochemistry --- aluminum 7075 --- anodizing --- oil-impregnation --- corrosion resistance --- salt spray test --- Cerium oxide nanoparticles --- anti-reflection --- self-assembly --- microfluidics --- convective self-assembly --- corrosion inhibitor --- corrosion mechanism --- cysteine --- thin film --- C-Mnsteel --- corrosion inhibitors --- bio-copolymer --- starch --- glycerin --- mild steel --- EIS --- SEM --- Raman spectroscopy --- pitting corrosion --- synergistic effect
Choose an application
Active (also called “smart”) coatings and thin films are defined as those that are capable of sensing their environment and appropriately responding to that external stimulus. This Special Issue “Active Organic and Organic-Inorganic Hybrid Coatings and Thin Films: Challenges, Developments, Perspectives” collected a series of papers that outline the current frontiers in the development of smart coatings and thin films for corrosion and other types of materials applications. The first four papers focus on novel discoveries on coatings with corrosion protection properties. These include environmentally-friendly polyurethane loaded with cerium nitrate corrosion inhibitor for mild steel protection, hot-pressed organic polymer coatings for the protection of pre-treated aluminum alloy surfaces exposed to NaCl aqueous solutions, functional epoxy coating with modified functional TiO2 for steel substrates protection, and hybrid composites against the thermo-oxidative corrosion of the metal parts of the internal combustion engines, turbines, and heaters. The next paper explores the potential of organic polymer/ceramic composite coatings to enhance the scratch resistance of typical floor laminates. The next three papers highlight other types of smart coatings and thin films, including low-temperature curable hybrid dielectric materials for field-effect transistors, bilayer antireflective coatings for optoelectronic devices, and organic polymers as the thin-film component for enthalpy exchanger systems in air conditioning applications. The final two papers focus on important research specific to coatings that serve as protection and preservation cultural heritage materials.
Research & information: general --- high-temperature coatings --- corrosion protection --- powder coatings --- scale inhibition --- anti-corrosion --- mesoporous TiO2 whiskers --- organic coatings --- mild steel --- waterborne polyurethane --- corrosion --- cerium nitrate --- coating --- HVAC --- SPEEK --- cross-linking --- INCA method --- thin membranes --- high DS --- refractive index --- deposition angle --- wavelength --- antireflective --- omnidirectional --- nanostructures --- thermal stability --- high pressure laminates (HPL) --- overlay --- alumina --- functionalization --- silane coupling agent --- scratch resistance --- scratch visibility --- scratch hardness --- organic thin-film transistors --- dielectric --- organosilicate --- copolymer --- poly(phenylene methylene), aluminum alloy --- AA2024 --- coatings by hot pressing --- additives --- fluorescence --- waterborne coatings --- batch miniemulsion --- weathering --- stone preservation --- coatings --- nanosilica --- nano-TiO2 --- nano-clay --- stone conservation --- wood protection --- high-temperature coatings --- corrosion protection --- powder coatings --- scale inhibition --- anti-corrosion --- mesoporous TiO2 whiskers --- organic coatings --- mild steel --- waterborne polyurethane --- corrosion --- cerium nitrate --- coating --- HVAC --- SPEEK --- cross-linking --- INCA method --- thin membranes --- high DS --- refractive index --- deposition angle --- wavelength --- antireflective --- omnidirectional --- nanostructures --- thermal stability --- high pressure laminates (HPL) --- overlay --- alumina --- functionalization --- silane coupling agent --- scratch resistance --- scratch visibility --- scratch hardness --- organic thin-film transistors --- dielectric --- organosilicate --- copolymer --- poly(phenylene methylene), aluminum alloy --- AA2024 --- coatings by hot pressing --- additives --- fluorescence --- waterborne coatings --- batch miniemulsion --- weathering --- stone preservation --- coatings --- nanosilica --- nano-TiO2 --- nano-clay --- stone conservation --- wood protection
Choose an application
Introduction and Scope—During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.
high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott–Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718 --- n/a --- Mott-Schottky analysis
Choose an application
Introduction and Scope—During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.
History of engineering & technology --- high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott-Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718 --- high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott-Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718
Choose an application
Introduction and Scope—During the last few decades, an enormous effort has been made to understand corrosion phenomena and their mechanisms, and to elucidate the causes that dramatically influence the service lifetime of metal materials. The performance of metal materials in aggressive environments is critical for a sustainable society. The failure of the material in service impacts the economy, the environment, health, and society. In this regard, corrosion-based economic losses due to maintenance, repair, and the replacement of existing structures and infrastructure account for up to 4% of gross domestic product (GDP) in well developed countries. One of the biggest issues in corrosion engineering is estimating service lifetime. Corrosion prediction has become very difficult, as there is no direct correlation with service lifetime and experimental lab results, usually as a result of discrepancies between accelerated testing and real corrosion processes. It is of major interest to forecast the impact of corrosion-based losses on society and the global economy, since existing structures and infrastructure are becoming old, and crucial decisions now need to be made to replace them. On the other hand, environmental protocols seek to reduce greenhouse effects. Therefore, low emission policies, in force, establish regulations for the next generation of materials and technologies. Advanced technologies and emergent materials will enable us to get through the next century. Great advances are currently in progress for the development of corrosion-resistant metal materials for different sectors, such as energy, transport, construction, and health. This Special Issue on the corrosion and protection of metals is focused on current trends in corrosion science, engineering, and technology, ranging from fundamental to applied research, thus covering subjects related to corrosion mechanisms and modelling, protection and inhibition processes, and mitigation strategies.
History of engineering & technology --- high interstitial alloy --- molybdenum --- pitting corrosion --- passive film --- Cu-Mg alloy --- conform --- surface nanocrystallization --- corrosion resistance --- corrosion --- spring steel --- shot peening --- Mott–Schottky analysis --- point defect --- alloy --- magnesium --- SEM-EDS --- EIS --- mass loss --- corrosion layers --- duplex stainless steel --- intergranular corrosion --- stress corrosion cracking --- CPT --- DL-EPR --- aluminum --- heat exchanger --- galvanic corrosion --- simulation --- polarization --- electrochemical impedance spectroscopy --- high velocity oxy fuel coatings --- iron aluminide --- titanium carbide --- atmospheric corrosion --- strain measurement --- mild steel --- corrosion product --- residual stress --- AC current density --- crystallographic texture --- intergranular and transgranular cracks --- brass --- CuZn36Pb2As --- CuZn21Si3P --- dezincification --- simulated drinking water --- long immersion --- mortar --- reinforcement --- lean duplex --- stainless steel --- chloride --- alkalinity --- microstructure --- anodic polarization --- ISO 9223 --- corrosivity categories --- predictive models --- archipelagic regions --- Canary Islands --- X70 steel --- stress corrosion cracking (SCC) --- slow strain rate tests (SSRT) --- electrochemical impedance spectroscopy (EIS) --- cathodic potentials --- Atmospheric corrosion --- corrosion rates --- exposure angle --- orientation angle --- carbon steel --- double loop electrochemical potentiokinetic reactivation (DL−EPR) --- sensitization --- ultrasonic nanocrystal surface modification (UNSM) --- Inconel 718 --- n/a --- Mott-Schottky analysis
Listing 1 - 10 of 10 |
Sort by
|