Narrow your search

Library

FARO (9)

KU Leuven (9)

LUCA School of Arts (9)

Odisee (9)

Thomas More Kempen (9)

Thomas More Mechelen (9)

UCLL (9)

ULiège (9)

VIVES (9)

Vlaams Parlement (9)

More...

Resource type

book (22)


Language

English (21)

German (1)


Year
From To Submit

2022 (12)

2021 (2)

2019 (8)

Listing 1 - 10 of 22 << page
of 3
>>
Sort by

Book
Charakterisierung und Modellierung von instabilen Metamaterialien
Author:
ISBN: 1000087932 3731508699 Year: 2019 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metamaterials, composed of structural building blocks, derive their effective properties from the structure, rather than from their constituent materials they are built from. By designing and analysing a mechanical unstable metamaterial, the potentials given by structural instabilities are investigated. Furthermore the possibilities in modelling the stability behaviour and the effective properties of such materials on the different length-scales are intensively discussed throughout this work.


Book
Hollow core optical fibers
Author:
ISBN: 3039210890 3039210882 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The possibility of guiding light in air has fascinated optical scientists and engineers since the dawn of optical fiber technology. In the last few years, hollow core optical fibers have been attracting the attention of an expanding worldwide research community, furthering the design, fabrication and device implementation of specialty optical fibers. Hollow core optical fibers are entering almost any specific application field of optics from medicine to security; from telecommunication to industrial processing; from instrumentation to biology. In parallel to the increased number of applications, major advances are still being made on the optimization of hollow core fiber designs and on the study of its underlying guiding properties, as well as in the use of different materials and fabrication techniques, which, in turn, are providing even more ways of exploitation of this technology and new technical challenges. This Special Issue of Fibers rides the wave of this increasing interest in the field of hollow core optical fibers by providing an overview of the recent progress in this field as well as an updated and indicative sample of current research activities worldwide.


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Keywords

hydrides --- membrane --- Pd-Ag membranes --- electroless plating --- defect distribution --- hydrogen --- hydrogen production --- suspension plasma spraying --- chemical potential --- review --- grain boundary --- manufacturing --- palladium --- LOHC --- palladium alloy --- open architecture --- PdAg-membrane --- hydrogen permeation --- modelling --- membranes --- pore mouth size distribution --- MLLDP --- solubility --- closed architecture --- demonstration --- Pd-based membrane --- methanol steam reforming --- activity --- micro reactor --- microstructured --- hydrogen separation --- membrane reactors --- Pd alloy --- hydrogen purification --- palladium-based membrane --- gas to liquid --- dense Pd membrane --- propylene --- heat treatment --- surface characterization --- porous membrane --- multi-stage --- membrane reactor --- dehydrogenation --- hydrides --- membrane --- Pd-Ag membranes --- electroless plating --- defect distribution --- hydrogen --- hydrogen production --- suspension plasma spraying --- chemical potential --- review --- grain boundary --- manufacturing --- palladium --- LOHC --- palladium alloy --- open architecture --- PdAg-membrane --- hydrogen permeation --- modelling --- membranes --- pore mouth size distribution --- MLLDP --- solubility --- closed architecture --- demonstration --- Pd-based membrane --- methanol steam reforming --- activity --- micro reactor --- microstructured --- hydrogen separation --- membrane reactors --- Pd alloy --- hydrogen purification --- palladium-based membrane --- gas to liquid --- dense Pd membrane --- propylene --- heat treatment --- surface characterization --- porous membrane --- multi-stage --- membrane reactor --- dehydrogenation


Book
Superconducting and Graphene-based Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication

Keywords

Technology: general issues --- GFET --- RF --- access region --- superconducting devices --- photodetectors --- nanostructured materials --- nanostructured and microstructured superconductors --- high temperature superconductors --- bolometers --- quantum electronics --- noise spectroscopy --- granular aluminum oxide --- superconducting nanowires --- current-resistance effects --- iron-based superconductors --- nanowires --- single-photon detectors --- superconductivity --- transport properties --- energy gap --- superconducting order parameter --- proximity effect --- nano-junction --- Andreev reflection --- chemical --- vapor deposition --- graphene oxide --- transition-metal dichalcogenides --- WS2 --- perfect graphene (p-Gr) --- defective graphene (d-Gr) --- Gr/Si slab --- diffusion barrier --- CI-NEB calculation --- GFET --- RF --- access region --- superconducting devices --- photodetectors --- nanostructured materials --- nanostructured and microstructured superconductors --- high temperature superconductors --- bolometers --- quantum electronics --- noise spectroscopy --- granular aluminum oxide --- superconducting nanowires --- current-resistance effects --- iron-based superconductors --- nanowires --- single-photon detectors --- superconductivity --- transport properties --- energy gap --- superconducting order parameter --- proximity effect --- nano-junction --- Andreev reflection --- chemical --- vapor deposition --- graphene oxide --- transition-metal dichalcogenides --- WS2 --- perfect graphene (p-Gr) --- defective graphene (d-Gr) --- Gr/Si slab --- diffusion barrier --- CI-NEB calculation


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.


Book
Pd-based Membranes. Overview and Perspectives
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.


Book
Superconducting and Graphene-based Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication


Book
Superconducting and Graphene-based Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication


Book
Optical Gas Sensing: Media, Mechanisms and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.

Keywords

Technology: general issues --- History of engineering & technology --- laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements


Book
Optical Gas Sensing: Media, Mechanisms and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.

Keywords

laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements

Listing 1 - 10 of 22 << page
of 3
>>
Sort by