Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Cryptosporidiosis --- Microsporidiosis --- Microspora infections --- Microsporidia infections --- Microsporidial diseases --- Microsporidial infections --- Opportunistic infections --- Protozoan diseases --- Cryptosporidial infections --- Cryptosporidium infections --- Coccidiosis
Choose an application
Opportunistic Infections: Toxoplasma, Sarcocystis, and Microsporidia will focus on two important Genera of Apicomplexan parasites, Toxoplasma gondii and Sarcocystis species, and the medically important members of the Phylum Microsporida. We have been fortunate in obtaining excellent contributions from many experts in the field. Volumes in the "World Class Parasites" book series are written for researchers, students and scholars who enjoy reading about excellent research on problems of global significance. Each volume focuses on a parasite, or group of parasites, that has a major impact on human health, or agricultural productivity, and against which we have no satisfactory defense. The volumes are intended to supplement more formal texts that cover taxonomy, life cycles, morphology, vector distribution, symptoms and treatment. They integrate vector, pathogen and host biology and celebrate the diversity of approach that comprises modern parasitological research.
Business logistics --- Information technology --- Information networks --- Business networks --- Electronic commerce --- Management Theory --- Management Styles & Communication --- Management --- Business & Economics --- Technological innovations --- Medical parasitology. --- Morphology (Animals). --- Emerging infectious diseases. --- Food science. --- Microbiology. --- Parasitology. --- Animal Anatomy / Morphology / Histology. --- Infectious Diseases. --- Food Science. --- Medical Microbiology. --- Animal anatomy. --- Infectious diseases. --- Food—Biotechnology. --- Medical microbiology. --- Animal anatomy --- Animals --- Biology --- Physiology --- Anatomy --- Microsporidia. --- Production management. --- Manufactures. --- Operations research. --- Technological innovations. --- Operations Management. --- Machines, Tools, Processes. --- Operations Research and Decision Theory. --- Innovation and Technology Management.
Choose an application
Over the past decade, the worldwide decline in honey bee populations has been an important issue due to its implications for beekeeping and honey production. Honey bee pathologies are continuously studied by researchers, in order to investigate the host–parasite relationship and its effect on honey bee colonies. For these reasons, the interest of the veterinary community towards this issue has increased recently, and honey bee health has also become a subject of public interest. Bacteria, such as Melissococcus plutonius and Paenibacillus larvae, microsporidia, such as Nosema apis and Nosema ceranae, fungi, such as Ascosphaera apis, mites, such as Varroa destructor, predatory wasps, including Vespa velutina, and invasive beetles, such as Aethina tumida, are “old” and “new” subjects of important veterinary interest. Recently, the role of host–pathogen interactions in bee health has been included in a multifactorial approach to the study of these insects’ health, which involves a dynamic balance among a range of threats and resources interacting at multiple levels. The aim of this Special Issue is to explore honey bee health through a series of research articles that are focused on different aspects of honey bee health at different levels, including molecular health, microbial health, population genetic health, and the interaction between invasive species that live in strict contact with honey bee populations.
Research & information: general --- text-mining --- topic modeling --- colony collapse disorder --- genomics --- Varroa mite --- honey bee health --- Apis mellifera --- GABA --- beta-alanine --- oxalic acid --- diet effect --- microbiota --- bee --- silicone band --- hive --- passive sampler --- honey bee --- virus --- DWV-A --- hive products --- honey --- pollen --- wax --- Nosema ceranae --- Nosema apis --- epidemiology --- replacement --- ecoregions --- North Asia --- DNA analysis --- health --- Lotmaria passim --- Melissococcus plutonius --- pathology --- Tropilaelaps --- Varroa destructor --- honey bees --- mites --- viruses --- behavior --- social immunity --- Africanized bees --- microsatellites --- Uruguay --- honeybee --- One-Health --- nexus --- landscape --- beekeeper --- pathogens --- histopathology --- testes --- microsporidia --- Hsp70 gene --- 16S rRNA gene --- garlic --- viability --- prevalence --- infection intensity --- seasonality --- bee longevity --- bee population --- honey stores --- CCD --- mite --- reproductive rate --- worker brood --- infestation level --- longevity --- distribution --- model --- honey bee model --- grooming --- drones --- chronic bee paralysis virus --- Varroa infestation control --- nosemosis --- hairless black syndrome --- honeybee veterinary medicine --- acute bee paralysis --- chronic bee paralysis --- deformed wing virus --- varroa infestation --- honey bee losses --- viral diseases --- nosematosis --- negative pressures --- bee hive monitoring --- real-time monitoring --- sound measurement --- swarming detection --- queen bee detection --- sound analysis --- acaricides --- primer pheromone --- hydrocarbon profiles --- survival --- Nosema disease --- dark forest bee --- Apis mellifera mellifera --- microsatellite loci --- association --- gut microbiota --- gut mycobiota --- season --- Apis mellifera L. --- unicellular --- text-mining --- topic modeling --- colony collapse disorder --- genomics --- Varroa mite --- honey bee health --- Apis mellifera --- GABA --- beta-alanine --- oxalic acid --- diet effect --- microbiota --- bee --- silicone band --- hive --- passive sampler --- honey bee --- virus --- DWV-A --- hive products --- honey --- pollen --- wax --- Nosema ceranae --- Nosema apis --- epidemiology --- replacement --- ecoregions --- North Asia --- DNA analysis --- health --- Lotmaria passim --- Melissococcus plutonius --- pathology --- Tropilaelaps --- Varroa destructor --- honey bees --- mites --- viruses --- behavior --- social immunity --- Africanized bees --- microsatellites --- Uruguay --- honeybee --- One-Health --- nexus --- landscape --- beekeeper --- pathogens --- histopathology --- testes --- microsporidia --- Hsp70 gene --- 16S rRNA gene --- garlic --- viability --- prevalence --- infection intensity --- seasonality --- bee longevity --- bee population --- honey stores --- CCD --- mite --- reproductive rate --- worker brood --- infestation level --- longevity --- distribution --- model --- honey bee model --- grooming --- drones --- chronic bee paralysis virus --- Varroa infestation control --- nosemosis --- hairless black syndrome --- honeybee veterinary medicine --- acute bee paralysis --- chronic bee paralysis --- deformed wing virus --- varroa infestation --- honey bee losses --- viral diseases --- nosematosis --- negative pressures --- bee hive monitoring --- real-time monitoring --- sound measurement --- swarming detection --- queen bee detection --- sound analysis --- acaricides --- primer pheromone --- hydrocarbon profiles --- survival --- Nosema disease --- dark forest bee --- Apis mellifera mellifera --- microsatellite loci --- association --- gut microbiota --- gut mycobiota --- season --- Apis mellifera L. --- unicellular
Choose an application
Over the past decade, the worldwide decline in honey bee populations has been an important issue due to its implications for beekeeping and honey production. Honey bee pathologies are continuously studied by researchers, in order to investigate the host–parasite relationship and its effect on honey bee colonies. For these reasons, the interest of the veterinary community towards this issue has increased recently, and honey bee health has also become a subject of public interest. Bacteria, such as Melissococcus plutonius and Paenibacillus larvae, microsporidia, such as Nosema apis and Nosema ceranae, fungi, such as Ascosphaera apis, mites, such as Varroa destructor, predatory wasps, including Vespa velutina, and invasive beetles, such as Aethina tumida, are “old” and “new” subjects of important veterinary interest. Recently, the role of host–pathogen interactions in bee health has been included in a multifactorial approach to the study of these insects’ health, which involves a dynamic balance among a range of threats and resources interacting at multiple levels. The aim of this Special Issue is to explore honey bee health through a series of research articles that are focused on different aspects of honey bee health at different levels, including molecular health, microbial health, population genetic health, and the interaction between invasive species that live in strict contact with honey bee populations.
Research & information: general --- text-mining --- topic modeling --- colony collapse disorder --- genomics --- Varroa mite --- honey bee health --- Apis mellifera --- GABA --- beta-alanine --- oxalic acid --- diet effect --- microbiota --- bee --- silicone band --- hive --- passive sampler --- honey bee --- virus --- DWV-A --- hive products --- honey --- pollen --- wax --- Nosema ceranae --- Nosema apis --- epidemiology --- replacement --- ecoregions --- North Asia --- DNA analysis --- health --- Lotmaria passim --- Melissococcus plutonius --- pathology --- Tropilaelaps --- Varroa destructor --- honey bees --- mites --- viruses --- behavior --- social immunity --- Africanized bees --- microsatellites --- Uruguay --- honeybee --- One-Health --- nexus --- landscape --- beekeeper --- pathogens --- histopathology --- testes --- microsporidia --- Hsp70 gene --- 16S rRNA gene --- garlic --- viability --- prevalence --- infection intensity --- seasonality --- bee longevity --- bee population --- honey stores --- CCD --- mite --- reproductive rate --- worker brood --- infestation level --- longevity --- distribution --- model --- honey bee model --- grooming --- drones --- chronic bee paralysis virus --- Varroa infestation control --- nosemosis --- hairless black syndrome --- honeybee veterinary medicine --- acute bee paralysis --- chronic bee paralysis --- deformed wing virus --- varroa infestation --- honey bee losses --- viral diseases --- nosematosis --- negative pressures --- bee hive monitoring --- real-time monitoring --- sound measurement --- swarming detection --- queen bee detection --- sound analysis --- acaricides --- primer pheromone --- hydrocarbon profiles --- survival --- Nosema disease --- dark forest bee --- Apis mellifera mellifera --- microsatellite loci --- association --- gut microbiota --- gut mycobiota --- season --- Apis mellifera L. --- unicellular --- n/a
Choose an application
Over the past decade, the worldwide decline in honey bee populations has been an important issue due to its implications for beekeeping and honey production. Honey bee pathologies are continuously studied by researchers, in order to investigate the host–parasite relationship and its effect on honey bee colonies. For these reasons, the interest of the veterinary community towards this issue has increased recently, and honey bee health has also become a subject of public interest. Bacteria, such as Melissococcus plutonius and Paenibacillus larvae, microsporidia, such as Nosema apis and Nosema ceranae, fungi, such as Ascosphaera apis, mites, such as Varroa destructor, predatory wasps, including Vespa velutina, and invasive beetles, such as Aethina tumida, are “old” and “new” subjects of important veterinary interest. Recently, the role of host–pathogen interactions in bee health has been included in a multifactorial approach to the study of these insects’ health, which involves a dynamic balance among a range of threats and resources interacting at multiple levels. The aim of this Special Issue is to explore honey bee health through a series of research articles that are focused on different aspects of honey bee health at different levels, including molecular health, microbial health, population genetic health, and the interaction between invasive species that live in strict contact with honey bee populations.
text-mining --- topic modeling --- colony collapse disorder --- genomics --- Varroa mite --- honey bee health --- Apis mellifera --- GABA --- beta-alanine --- oxalic acid --- diet effect --- microbiota --- bee --- silicone band --- hive --- passive sampler --- honey bee --- virus --- DWV-A --- hive products --- honey --- pollen --- wax --- Nosema ceranae --- Nosema apis --- epidemiology --- replacement --- ecoregions --- North Asia --- DNA analysis --- health --- Lotmaria passim --- Melissococcus plutonius --- pathology --- Tropilaelaps --- Varroa destructor --- honey bees --- mites --- viruses --- behavior --- social immunity --- Africanized bees --- microsatellites --- Uruguay --- honeybee --- One-Health --- nexus --- landscape --- beekeeper --- pathogens --- histopathology --- testes --- microsporidia --- Hsp70 gene --- 16S rRNA gene --- garlic --- viability --- prevalence --- infection intensity --- seasonality --- bee longevity --- bee population --- honey stores --- CCD --- mite --- reproductive rate --- worker brood --- infestation level --- longevity --- distribution --- model --- honey bee model --- grooming --- drones --- chronic bee paralysis virus --- Varroa infestation control --- nosemosis --- hairless black syndrome --- honeybee veterinary medicine --- acute bee paralysis --- chronic bee paralysis --- deformed wing virus --- varroa infestation --- honey bee losses --- viral diseases --- nosematosis --- negative pressures --- bee hive monitoring --- real-time monitoring --- sound measurement --- swarming detection --- queen bee detection --- sound analysis --- acaricides --- primer pheromone --- hydrocarbon profiles --- survival --- Nosema disease --- dark forest bee --- Apis mellifera mellifera --- microsatellite loci --- association --- gut microbiota --- gut mycobiota --- season --- Apis mellifera L. --- unicellular --- n/a
Listing 1 - 5 of 5 |
Sort by
|