Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULB (7)

ULiège (7)

VIVES (7)

More...

Resource type

book (17)


Language

English (17)


Year
From To Submit

2022 (3)

2021 (6)

2020 (7)

2019 (1)

Listing 1 - 10 of 17 << page
of 2
>>
Sort by

Book
Catalytic Methods in Flow Chemistry
Authors: ---
ISBN: 3039287338 303928732X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The chemical industry is essential in the daily human life of modern society; despite the misconception about the real need for chemical production, everyone enjoys the benefit of the chemical progress. However, the chemical industry generates a large variety of products, including (i) basic chemicals, e.g., polymers, petrochemicals, and basic inorganics; (ii) specialty chemicals for crop protection, paints, inks, colorants, textiles, paper, and engineering; and (iii) consumer chemicals, including detergents, soaps, etc. For these reasons, chemists in both academia and industry are challenged with developing green and sustainable chemical production toward the full-recycling of feedstocks and waste. Aiming to improve the intensification of the process, chemists have established chemical reactions based on catalysis, as well as alternative technologies, such as continuous flow. The aim of this book is to cover promising recent research and novel trends in the field of novel catalytic reactions (homogeneous, heterogeneous, and enzymatic, as well as their combinations) in continuous flow conditions. A collection of recent contribution for conversion of starting material originated from petroleum resources or biomass into highly-added value chemicals are reported.


Book
Optofluidic Devices and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.


Book
Optofluidic Devices and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.


Book
Optofluidic Devices and Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.


Book
Experimental and Numerical Studies in Biomedical Engineering
Authors: ---
ISBN: 3039212486 3039212478 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The term ‘biomedical engineering’ refers to the application of the principles and problem-solving techniques of engineering to biology and medicine. Biomedical engineering is an interdisciplinary branch, as many of the problems health professionals are confronted with have traditionally been of interest to engineers because they involve processes that are fundamental to engineering practice. Biomedical engineers employ common engineering methods to comprehend, modify, or control biological systems, and to design and manufacture devices that can assist in the diagnosis and therapy of human diseases. This Special Issue of Fluids aims to be a forum for scientists and engineers from academia and industry to present and discuss recent developments in the field of biomedical engineering. It contains papers that tackle, both numerically (Computational Fluid Dynamics studies) and experimentally, biomedical engineering problems, with a diverse range of studies focusing on the fundamental understanding of fluid flows in biological systems, modelling studies on complex rheological phenomena and molecular dynamics, design and improvement of lab-on-a-chip devices, modelling of processes inside the human body as well as drug delivery applications. Contributions have focused on problems associated with subjects that include hemodynamical flows, arterial wall shear stress, targeted drug delivery, FSI/CFD and Multiphysics simulations, molecular dynamics modelling and physiology-based biokinetic models.


Book
MOFs for Advanced Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal organic frameworks (MOFs) are a class of porous materials with a modular structure. This allows for very wide structural diversity and the possibility of synthesizing materials with tailored properties for advanced applications. Thus, MOF materials are the subject of intense research, with strong relevance to both science and technology. MOFs are formed by the assembly of two components: cluster or metal ion nodes, which are also called secondary building units (SBUs), and organic linkers between the SBUs, usually giving rise to crystalline structures with an open framework and significant porous texture development. The main aim of this Special Issue of Catalysts (ISSN 2073-4344) is to present the most relevant and recent insights in the field of the synthesis and characterization of MOFs and MOF-based materials for advanced applications, including adsorption, gas storage/capture, drug delivery, catalysis, photocatalysis, and/or chemical sensing.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- Metal–organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal–organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- metal-organic frameworks --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough --- n/a --- Metal-organic framework


Book
MOFs for Advanced Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal organic frameworks (MOFs) are a class of porous materials with a modular structure. This allows for very wide structural diversity and the possibility of synthesizing materials with tailored properties for advanced applications. Thus, MOF materials are the subject of intense research, with strong relevance to both science and technology. MOFs are formed by the assembly of two components: cluster or metal ion nodes, which are also called secondary building units (SBUs), and organic linkers between the SBUs, usually giving rise to crystalline structures with an open framework and significant porous texture development. The main aim of this Special Issue of Catalysts (ISSN 2073-4344) is to present the most relevant and recent insights in the field of the synthesis and characterization of MOFs and MOF-based materials for advanced applications, including adsorption, gas storage/capture, drug delivery, catalysis, photocatalysis, and/or chemical sensing.

Keywords

Metal–organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal–organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- metal-organic frameworks --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough --- n/a --- Metal-organic framework


Book
MOFs for Advanced Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Metal organic frameworks (MOFs) are a class of porous materials with a modular structure. This allows for very wide structural diversity and the possibility of synthesizing materials with tailored properties for advanced applications. Thus, MOF materials are the subject of intense research, with strong relevance to both science and technology. MOFs are formed by the assembly of two components: cluster or metal ion nodes, which are also called secondary building units (SBUs), and organic linkers between the SBUs, usually giving rise to crystalline structures with an open framework and significant porous texture development. The main aim of this Special Issue of Catalysts (ISSN 2073-4344) is to present the most relevant and recent insights in the field of the synthesis and characterization of MOFs and MOF-based materials for advanced applications, including adsorption, gas storage/capture, drug delivery, catalysis, photocatalysis, and/or chemical sensing.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- Metal-organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal-organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough


Book
Iron and Cobalt Catalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.

Keywords

Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys


Book
Biocatalytic Process Optimization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biocatalysis is very appealing to the industry because it allows, in principle, the synthesis of products not accessible by chemical synthesis. Enzymes are very effective, as are precise biocatalysts, as they are enantioselective, with mild reaction conditions and green chemistry. Biocatalysis is currently widely used in the pharmaceutical industry, food industry, cosmetic industry, and textile industry. This includes enzyme production, biocatalytic process development, biotransformation, enzyme engineering, immobilization, the synthesis of fine chemicals and the recycling of biocatalysts. One of the most challenging problems in biocatalysis applications is process optimization. This Special Issue shows that an optimized biocatalysis process can provide an environmentally friendly, clean, highly efficient, low cost, and renewable process for the synthesis and production of valuable products. With further development and improvements, more biocatalysis processes may be applied in the future.

Keywords

Research & information: general --- catechin --- degalloylation --- flavonol --- glycoside hydrolase --- optimization --- tannase --- immobilized DERA --- statin side chain --- continuous flow synthesis --- alginate-luffa matrix --- design of experiments --- Anguilla marmorata --- eel protein hydrolysates --- functional properties --- herbal eel extracts --- agarose --- agarase --- agarotriose --- agaropentaose --- expression --- calycosin --- calycosin-7-O-β-D-glucoside --- glucosyltransferase --- sucrose synthase --- UDP-glucose recycle --- UGT–SuSy cascade reaction --- Candida antarctica lipase A --- surface-display system --- shear rate --- mass transfer rate --- enzymatic kinetic study --- enzymatic synthesis --- β-amino acid esters --- microreactor --- aromatic amines --- Michael addition --- kraft pulp --- cellulose --- xylan --- enzymatic hydrolysis --- Penicillium verruculosum --- glucose --- xylose --- lipase --- acidolysis --- docosahexaenoic acid ethyl ester --- eicosapentaenoic acid ethyl ester --- ethyl acetate --- kinetics --- styrene monooxygenase --- indole monooxygenase --- two-component system --- chiral biocatalyst --- solvent tolerance --- biotransformation --- epoxidation --- NAD(P)H-mimics --- superoxide dismutase (SOD) --- catalase (CAT) --- glutathione reductase (GR) --- aluminum (Al) --- selenium (Se) --- mouse --- brain --- liver --- phosphatidylcholine --- 3,4-dimethoxycinnamic acid --- enzymatic interesterification --- biocatalysis --- Pleurotus ostreatus --- enenzymatic hydrolysis --- peptide --- antioxidant --- hepatoprotective activity --- Yarrowia lipolytica --- whole–cell biocatalysis --- indolizine --- cycloaddition --- trehalose --- viscosity --- enzymes --- protein dynamics --- Kramers’ theory --- protein stabilization --- enzyme inhibition --- Lipase --- transesterification --- 2-phenylethyl acetate --- packed-bed reactor --- solvent-free --- cyclic voltammetry --- electrochemical impedance spectroscopy --- carbon nanotubes --- redox mediators --- CYP102A1 --- naringin dihydrochalcone --- neoeriocitrin dihydrochalcone --- regioselective hydroxylation --- n/a --- UGT-SuSy cascade reaction --- whole-cell biocatalysis --- Kramers' theory

Listing 1 - 10 of 17 << page
of 2
>>
Sort by