Listing 1 - 10 of 46 | << page >> |
Sort by
|
Choose an application
The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this “tension” have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this “tension” have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.
Antagonism --- Microbial Interactions --- Mutualism --- cooperation --- conflict
Choose an application
The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this “tension” have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this “tension” have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.
Antagonism --- Microbial Interactions --- Mutualism --- cooperation --- conflict
Choose an application
Parasites --- Host Microbial Interactions. --- physiology. --- Physiologie.
Choose an application
Host Microbial Interactions. --- Parasites --- Parasitic Diseases. --- physiology.
Choose an application
The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this “tension” have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.The most evident aspect of biodiversity is the variety of complex forms and behaviors among organisms, both living and extinct. Comparative molecular and physiological studies show that the evolution of complex phenotypic traits involves multiple levels of biological organization (i.e. genes, chromosomes, organelles, cells, individual organisms, species, etc.). Regardless of the specific molecular mechanisms and details, the evolution of different complex biological organizations share a commonality: cooperation and conflict among the parts of the biological unit under study. The potential for conflict among parts is abundant. How then do complex systems persist, given the necessity of cooperative behavior for their maintenance, when the potential for conflict occurs across all levels of biological organization? In this Research Topic and eBook we present ideas and work on the question, how coexistence of biological components at different levels of organization persists in the face of antagonistic, conflicting or even exploitative behavior of the parts? The goal of this topic is in presenting examples of cooperation and conflict at different levels of biological organization to discuss the consequences that this “tension” have had in the diversification and emergence of novel phenotypic traits. Exemplary cases are studies investigating: the evolution of genomes, formation of colonial aggregates of cells, biofilms, the origin and maintenance of multicellular organisms, and the stable coexistence of multispecies consortia producing a cooperative product. Altogether, we hope that the contributions to this Research Topic build towards mechanistic knowledge of the biological phenomenon of coexistence in the face of conflict. We believe that knowledge on the mechanisms of the origin and evolutionary maintenance of cooperation has implications beyond evolutionary biology such as novel approaches in controlling microbial infections in medicine and the modes by studies in synthetic biology are conducted when designing economically important microbial consortia.
Antagonism --- Microbial Interactions --- Mutualism --- cooperation --- conflict
Choose an application
"We can't see them, but microbes are the dominant form of life on Earth. They make up half of the world's biomass. They were here billions of years before we were, and they will be here after we are gone. Without their activity, life as we know it would be impossible. Even within our own bodies, there are ten times as many bacterial cells as human cells. Understanding Microbes provides a clear, accessible introduction to this world of microbes. As well as looking at a selection of infectious diseases, including how they are prevented and treated, the book explores the importance of microbes in the environment, in the production and preservation of food, and their applications in biotechnology.This lively and engaging book provides the basics of microbiology, in a contemporary context. It will be equally useful for students across the biological, environmental and health sciences, and for the curious reader wanting to learn more about this fascinating subject. A highly-readable, concise introduction to the basics of microbiology placed in the context of the very latest developments in molecular biology and their impact on the microbial world. Numerous real-world examples range from how cows digest grass to the role of microbes in cancer and the impact of climate change Well-illustrated in full colour throughout. Written by an Author with a proven track record in teaching, writing and research"--Provided by publisher.
Microbiologie. --- Microorganismes. --- Biomasse. --- Microbiological Phenomena. --- Microbial Interactions. --- Biomass. --- Environmental Microbiology.
Choose an application
"Human-Gut Microbiome: Establishment and Interactions gives an overview of microbiome establishments in humans and basic technologies used to decipher the structure and function of gut microbiome. Other sections focus on the application of microbiomics in different disease manifestations, such as obesity, diabetes, and more. The book provides the basics, as well as mechanistic knowledge underpinning the structural and functional understanding of the microbiome. With the advancement in omics technologies, as well as the development of bioinformatic tools, much research has been undertaken to decipher the microbiomes of different hosts. This research is generating valuable insights into micro-ecological niches and their impact on humans, hence this new release covers these new insights. The book will be a valuable resource for scientists, researchers, postgraduate and graduate students who are interested in understanding the impact and importance of the omics approach to humans and their microbiomes. Provides an overview of the recent developments in meta-omics technologies. Serves as a unique reference for healthcare professionals, pursuing research on gut homeostasis, and functional foods, as well as nutritional dietary management. Focuses on the application of microbiomics in different disease manifestations, such as obesity, diabetes, and more."--
Gastrointestinal system --- Microbiology. --- Prebiotics --- Probiotics --- Microbiota --- Microbiomes. --- Gastrointestinal Microbiome --- Host Microbial interactions --- Dysbiosis --- Pathophysiology. --- Gastrointestinal Microbiome. --- Host Microbial Interactions. --- Microbiota. --- Dysbiosis.
Choose an application
Microbiome Therapeutics: Personalized Therapy Beyond Conventional Approaches addresses the current knowledge and landscape of microbiome therapeutics, providing an overview of existing applications in health and disease as well as potential future directions of microbiome modulations and subsequent translation to the global industry and market. This important reference provides the most current status of microbiome therapeutics as well as possible future perspectives through coverage of topics including the application of microbiome therapeutics; various additive, subtractive and modulatory approaches; microbiome composition of health and diseases, insights into live bio-therapeutics and the clinical data supporting their efficacy. Case studies are provided throughout the book to further define, describe and evaluate microbiome therapeutics success and failure.
Microorganisms --- Type specimens. --- Type specimens (Natural history) --- Host Microbial Interactions --- Gastrointestinal Microbiome --- Biological Therapy --- methods --- Host Microbial Interactions. --- Gastrointestinal Microbiome. --- Biological Therapy. --- methods.
Choose an application
"Soils is a new journal devoted to publishing articles focused on biological, chemical, and physical processes operating within soils and sediments. We are particularly interested in studies or review articles that examine (or describe) coupled processes operating within these complex media that control element cycling. Processes that impact on retention and release, transport, and microbial interactions in soils are also of interest"-About, viewed March 26, 2020.
sediment --- microbial interactions --- cycling --- biological processes --- chemical processes --- physical processes --- Soils
Choose an application
Modern molecular -omics tools (metagenomics, metaproteomics etc.) have greatly contributed to the rapid advancement of our understanding of microbial diversity and function in the world’s oceans. These tools are now increasingly applied to host-associated environments to describe the symbiotic microbiome and obtain a holistic view of marine host-microbial interactions. Whilst all eukaryotic hosts are likely to benefit from their microbial associates, marine sessile eukaryotes, including macroalgae, seagrasses and various invertebrates (sponges, acidians, corals, hydroids etc), rely in particular on the function of their microbiome. For example, marine sessile eukaryotes are under constant grazing, colonization and fouling pressure from the millions of micro- and macroorganisms in the surrounding seawater. Host-associated microorganisms have been shown to produce secondary metabolites as defense molecules against unwanted colonization or pathogens, thus having an important function in host health and survival. Similarly microbial symbionts of sessile eukaryotes are often essential players in local nutrient cycling thus benefiting both the host and the surrounding ecosystem. Various research fields have contributed to generating knowledge of host-associated systems, including microbiology, biotechnology, molecular biology, ecology, evolution and biotechnology. Through a focus on model marine sessile host systems we believe that new insight into the interactions between host and microbial symbionts will be obtained and important areas of future research will be identified. This research topic includes original research, review and opinion articles that bring together the knowledge from different aspects of biology and highlight advances in our understanding of the diversity and function of the microbiomes on marine sessile hosts.
Symbiosis --- marine diseases --- marine microbiology --- oysters --- macroalgae --- Microbial Diversity --- seaweeds --- Sponges --- Microbial Interactions
Listing 1 - 10 of 46 | << page >> |
Sort by
|