Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The triple-R model (reduce, reuse, and recycle) is the essential concept of the circular economy. Due to population growth, the recovery of added-value products from wastes has become a challenge. Wastewaters of different origin (urban, industrial, mining, textile, distillery, and microbial culture, among others) are rich in energy, water, and nutrient sources that can be recovered and reused within a circular economy framework. Recently, wastewater treatment plants have been converted into biofactories, since they can convert waste into new products (water, nutrients, fertilizers, biomethane, electricity, heat, etc.) with a minimal environmental impact. In this context, adsorption and ion-exchange, as well as the integration of both processes, have been proposed as promising technologies for the treatment of wastewaters for resource recovery. Therefore, the aim of this Special Issue, entitled “Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery”, is to promote these two processes as innovative and environmentally friendly alternatives for the recovery of secondary raw materials from by-products or waste streams. These processes could improve the environmental, economic, and social impacts of the currently used wastewater treatment techniques.
clay --- dye --- adsorption --- isotherm --- kinetics --- hydroxyapatite --- calcium carbonate --- coating --- heavy metal sorption --- groundwater remediation --- adsorption technology --- ultra-sonication --- phosphate removal --- granular ferric hydroxide --- micro-sized adsorbents --- organic acid --- circular economy --- optimization process --- bio-economy --- response surface methodology --- corn stream --- surface-active compounds --- eco-adsorbents --- green membranes --- resource recovery --- hybrid biosorbent --- desorption --- thermodynamic --- nanofiltration --- n/a
Choose an application
The triple-R model (reduce, reuse, and recycle) is the essential concept of the circular economy. Due to population growth, the recovery of added-value products from wastes has become a challenge. Wastewaters of different origin (urban, industrial, mining, textile, distillery, and microbial culture, among others) are rich in energy, water, and nutrient sources that can be recovered and reused within a circular economy framework. Recently, wastewater treatment plants have been converted into biofactories, since they can convert waste into new products (water, nutrients, fertilizers, biomethane, electricity, heat, etc.) with a minimal environmental impact. In this context, adsorption and ion-exchange, as well as the integration of both processes, have been proposed as promising technologies for the treatment of wastewaters for resource recovery. Therefore, the aim of this Special Issue, entitled “Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery”, is to promote these two processes as innovative and environmentally friendly alternatives for the recovery of secondary raw materials from by-products or waste streams. These processes could improve the environmental, economic, and social impacts of the currently used wastewater treatment techniques.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- clay --- dye --- adsorption --- isotherm --- kinetics --- hydroxyapatite --- calcium carbonate --- coating --- heavy metal sorption --- groundwater remediation --- adsorption technology --- ultra-sonication --- phosphate removal --- granular ferric hydroxide --- micro-sized adsorbents --- organic acid --- circular economy --- optimization process --- bio-economy --- response surface methodology --- corn stream --- surface-active compounds --- eco-adsorbents --- green membranes --- resource recovery --- hybrid biosorbent --- desorption --- thermodynamic --- nanofiltration --- clay --- dye --- adsorption --- isotherm --- kinetics --- hydroxyapatite --- calcium carbonate --- coating --- heavy metal sorption --- groundwater remediation --- adsorption technology --- ultra-sonication --- phosphate removal --- granular ferric hydroxide --- micro-sized adsorbents --- organic acid --- circular economy --- optimization process --- bio-economy --- response surface methodology --- corn stream --- surface-active compounds --- eco-adsorbents --- green membranes --- resource recovery --- hybrid biosorbent --- desorption --- thermodynamic --- nanofiltration
Choose an application
The triple-R model (reduce, reuse, and recycle) is the essential concept of the circular economy. Due to population growth, the recovery of added-value products from wastes has become a challenge. Wastewaters of different origin (urban, industrial, mining, textile, distillery, and microbial culture, among others) are rich in energy, water, and nutrient sources that can be recovered and reused within a circular economy framework. Recently, wastewater treatment plants have been converted into biofactories, since they can convert waste into new products (water, nutrients, fertilizers, biomethane, electricity, heat, etc.) with a minimal environmental impact. In this context, adsorption and ion-exchange, as well as the integration of both processes, have been proposed as promising technologies for the treatment of wastewaters for resource recovery. Therefore, the aim of this Special Issue, entitled “Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery”, is to promote these two processes as innovative and environmentally friendly alternatives for the recovery of secondary raw materials from by-products or waste streams. These processes could improve the environmental, economic, and social impacts of the currently used wastewater treatment techniques.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- clay --- dye --- adsorption --- isotherm --- kinetics --- hydroxyapatite --- calcium carbonate --- coating --- heavy metal sorption --- groundwater remediation --- adsorption technology --- ultra-sonication --- phosphate removal --- granular ferric hydroxide --- micro-sized adsorbents --- organic acid --- circular economy --- optimization process --- bio-economy --- response surface methodology --- corn stream --- surface-active compounds --- eco-adsorbents --- green membranes --- resource recovery --- hybrid biosorbent --- desorption --- thermodynamic --- nanofiltration --- n/a
Listing 1 - 3 of 3 |
Sort by
|