Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2019 (5)

Listing 1 - 5 of 5
Sort by

Book
Modern Grinding Technology and Systems
Author:
ISBN: 3038429376 3038429384 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This specialist edition features key innovations in the science and engineering of new grinding processes, abrasives, tools, machines, and systems for a range of important industrial applications. Topics written by invited, internationally recognized authors review the advances and present results of research over a range of well-known grinding processes. A significant introductory review chapter explores innovations to achieve high productivity and very high precision in grinding. The reviewed applications range from grinding systems for very large lenses and reflectors, through to medium size grinding machine processes, and down to grinding very small components used in MEMS . Early research chapters explore the influence of grinding wheel topography on surface integrity and wheel wear. A novel chapter on abrasive processes also addresses the finishing of parts produced by additive manufacturing through mass finishing. Materials to be ground range from conventional engineering steels to aerospace materials, ceramics, and composites. The research findings highlight important new results for avoiding material sub-surface damage. The papers compiled in this book include references to many source publications which will be found invaluable for further research, such as new features introduced into control systems to improve process efficiency. The papers also reflect significant improvements and research findings relating to many aspects of grinding processes, including machines, materials, abrasives, wheel preparation, coolants, lubricants, and fluid delivery. Finally, a definitive chapter summarizes the optimal settings for high precision and the achievement of centerless grinding stability.


Book
Product/Process Fingerprint in Micro Manufacturing
Author:
ISBN: 3039210351 3039210343 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.

Keywords

n/a --- Fresnel lenses --- Electro sinter forging --- micro-injection moulding --- surface roughness --- charge relaxation time --- optimization --- gratings --- plasma-electrolytic polishing --- micro structures replication --- micro-grinding --- electrical discharge machining --- injection molding --- quality control --- commercial control hardware --- electrical current --- damping --- process monitoring --- fingerprints --- impact analysis --- current monitoring --- process control --- quality assurance --- surface integrity --- microfabrication --- microinjection moulding --- electro chemical machining --- superhydrophobic surface --- surface modification --- haptic actuator --- electrical discharge machining (EDM) --- surface morphology --- inline metrology --- optical quality control --- finishing --- flow length --- precision injection molding --- laser ablation --- micro metrology --- Halbach linear motor --- 2-step analysis --- computer holography --- PeP --- satellite drop --- process fingerprint --- materials characterisation --- current density --- micro drilling --- multi-spectral imaging --- lithography --- manufacturing signature --- artificial compound eye --- electrohydrodynamic jet printing --- ECM --- positioning platform --- diffractive optics --- bioceramics --- resistance sintering --- uncertainty budget --- product fingerprint --- confocal microscopy --- spectral splitting --- dental implant --- desirability function --- injection compression molding --- electrochemical machining (ECM) --- high strain rate effect --- process fingerprints


Book
Glassy Materials Based Microdevices
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

enhanced boiling heat transfer --- microfluidic devices --- thermal insulation --- fibers --- lab-on-a-chip --- precision glass molding --- device simulations --- spray pyrolysis technique --- dielectric materials --- detection of small molecules --- roughness --- direct metal forming --- micro-grinding --- MEMS --- chalcogenide glass --- whispering gallery mode --- down-shifting --- glass --- optofluidic microbubble resonator --- luminescent materials --- filling ratio --- 2D colloidal crystal --- waveguides --- micro-crack propagation --- fluid displacement --- biosensors --- freeform optics --- microstructured optical fibers --- laser micromachining --- polymeric microfluidic flow cytometry --- luminescence --- frequency conversion --- light --- micro/nano patterning --- resonator --- fiber coupling --- distributed sensing --- severing force --- microsphere --- alkali cells --- microfabrication --- hybrid materials --- enclosed microstructures --- infrared optics --- glassy carbon micromold --- Ag nanoaggregates --- microfluidics --- chemical/biological sensing --- porous media --- atomic spectroscopy --- quartz glass --- solar energy --- diffusion --- soft colloidal lithography --- groove --- compound glass --- metallic microstructure --- whispering gallery modes --- sol-gel --- communications --- femtosecond laser --- optofluidics --- europium --- aspherical lens --- long period grating --- optical cells --- polymers --- lasing --- photovoltaics --- microresonator --- sensing --- microspheres --- light localization --- Yb3+ ions --- laser materials processing --- photonic microdevices --- MEMS vapor cells --- microtechnology --- ultrafast laser micromachining --- photon --- single-cell protein quantification --- strain microsensor --- label-free sensor --- microdevices --- ultrafast laser welding --- nuclear fusion --- vectorial strain gauge --- single-cell analysis --- glass molding process


Book
Glassy Materials Based Microdevices
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

enhanced boiling heat transfer --- microfluidic devices --- thermal insulation --- fibers --- lab-on-a-chip --- precision glass molding --- device simulations --- spray pyrolysis technique --- dielectric materials --- detection of small molecules --- roughness --- direct metal forming --- micro-grinding --- MEMS --- chalcogenide glass --- whispering gallery mode --- down-shifting --- glass --- optofluidic microbubble resonator --- luminescent materials --- filling ratio --- 2D colloidal crystal --- waveguides --- micro-crack propagation --- fluid displacement --- biosensors --- freeform optics --- microstructured optical fibers --- laser micromachining --- polymeric microfluidic flow cytometry --- luminescence --- frequency conversion --- light --- micro/nano patterning --- resonator --- fiber coupling --- distributed sensing --- severing force --- microsphere --- alkali cells --- microfabrication --- hybrid materials --- enclosed microstructures --- infrared optics --- glassy carbon micromold --- Ag nanoaggregates --- microfluidics --- chemical/biological sensing --- porous media --- atomic spectroscopy --- quartz glass --- solar energy --- diffusion --- soft colloidal lithography --- groove --- compound glass --- metallic microstructure --- whispering gallery modes --- sol-gel --- communications --- femtosecond laser --- optofluidics --- europium --- aspherical lens --- long period grating --- optical cells --- polymers --- lasing --- photovoltaics --- microresonator --- sensing --- microspheres --- light localization --- Yb3+ ions --- laser materials processing --- photonic microdevices --- MEMS vapor cells --- microtechnology --- ultrafast laser micromachining --- photon --- single-cell protein quantification --- strain microsensor --- label-free sensor --- microdevices --- ultrafast laser welding --- nuclear fusion --- vectorial strain gauge --- single-cell analysis --- glass molding process


Book
Glassy Materials Based Microdevices
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

enhanced boiling heat transfer --- microfluidic devices --- thermal insulation --- fibers --- lab-on-a-chip --- precision glass molding --- device simulations --- spray pyrolysis technique --- dielectric materials --- detection of small molecules --- roughness --- direct metal forming --- micro-grinding --- MEMS --- chalcogenide glass --- whispering gallery mode --- down-shifting --- glass --- optofluidic microbubble resonator --- luminescent materials --- filling ratio --- 2D colloidal crystal --- waveguides --- micro-crack propagation --- fluid displacement --- biosensors --- freeform optics --- microstructured optical fibers --- laser micromachining --- polymeric microfluidic flow cytometry --- luminescence --- frequency conversion --- light --- micro/nano patterning --- resonator --- fiber coupling --- distributed sensing --- severing force --- microsphere --- alkali cells --- microfabrication --- hybrid materials --- enclosed microstructures --- infrared optics --- glassy carbon micromold --- Ag nanoaggregates --- microfluidics --- chemical/biological sensing --- porous media --- atomic spectroscopy --- quartz glass --- solar energy --- diffusion --- soft colloidal lithography --- groove --- compound glass --- metallic microstructure --- whispering gallery modes --- sol-gel --- communications --- femtosecond laser --- optofluidics --- europium --- aspherical lens --- long period grating --- optical cells --- polymers --- lasing --- photovoltaics --- microresonator --- sensing --- microspheres --- light localization --- Yb3+ ions --- laser materials processing --- photonic microdevices --- MEMS vapor cells --- microtechnology --- ultrafast laser micromachining --- photon --- single-cell protein quantification --- strain microsensor --- label-free sensor --- microdevices --- ultrafast laser welding --- nuclear fusion --- vectorial strain gauge --- single-cell analysis --- glass molding process

Listing 1 - 5 of 5
Sort by