Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2020 (3)

Listing 1 - 3 of 3
Sort by

Book
Functional Polymers in Sensors and Actuators: Fabrication and Analysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent advances in the fabrication techniques have enabled the production of different types of polymer sensors and actuators that can be utilized in a wide range of applications, such as soft robotics, biomedical, smart textiles and energy harvesting. Functional polymers possess dynamic physical and chemical properties, which make them suitable candidates for sensing and actuating tasks in response to external stimuli, such as radiation, temperature, chemical reaction, external force, magnetic and electric fields. This book focuses on the recent advancements in the modeling and analysis of functional polymer systems.

Keywords

History of engineering & technology --- polymer gel --- colloidal crystals --- optical film --- pH sensor --- graphene oxide --- silver nanowires --- ionic electroactive polymer --- poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) --- 4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol --- IIECMS --- MWCNT-CDC fibers --- PPy/DBS linear films --- uncertainty measurements --- electrostrictive properties --- actuators --- structural β-phase --- dielectric properties --- P(VDF-HFP) nanofibers --- electrospinning --- thermal compression --- hydrogels --- 3D printing --- tough --- sensor --- multi-parameter perturbation method --- piezoelectric polymers --- experimental verification --- cantilever beam --- force–electric coupling characteristics --- 4D printing --- metastructure --- shape-memory polymers --- wave propagation --- finite element method --- bandgap --- polymer composites --- microelectromechanical system (MEMS) --- electromagnetic (EM) actuator --- magnetic membrane --- microfluidic --- biomedical --- dynamic hydrogels --- tannic acid --- chitin nanofibers --- starch --- self-healing --- self-recovery --- functional polymers --- sensors --- polymer gel --- colloidal crystals --- optical film --- pH sensor --- graphene oxide --- silver nanowires --- ionic electroactive polymer --- poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) --- 4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol --- IIECMS --- MWCNT-CDC fibers --- PPy/DBS linear films --- uncertainty measurements --- electrostrictive properties --- actuators --- structural β-phase --- dielectric properties --- P(VDF-HFP) nanofibers --- electrospinning --- thermal compression --- hydrogels --- 3D printing --- tough --- sensor --- multi-parameter perturbation method --- piezoelectric polymers --- experimental verification --- cantilever beam --- force–electric coupling characteristics --- 4D printing --- metastructure --- shape-memory polymers --- wave propagation --- finite element method --- bandgap --- polymer composites --- microelectromechanical system (MEMS) --- electromagnetic (EM) actuator --- magnetic membrane --- microfluidic --- biomedical --- dynamic hydrogels --- tannic acid --- chitin nanofibers --- starch --- self-healing --- self-recovery --- functional polymers --- sensors


Book
Functional Polymers in Sensors and Actuators: Fabrication and Analysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent advances in the fabrication techniques have enabled the production of different types of polymer sensors and actuators that can be utilized in a wide range of applications, such as soft robotics, biomedical, smart textiles and energy harvesting. Functional polymers possess dynamic physical and chemical properties, which make them suitable candidates for sensing and actuating tasks in response to external stimuli, such as radiation, temperature, chemical reaction, external force, magnetic and electric fields. This book focuses on the recent advancements in the modeling and analysis of functional polymer systems.


Book
Functional Polymers in Sensors and Actuators: Fabrication and Analysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent advances in the fabrication techniques have enabled the production of different types of polymer sensors and actuators that can be utilized in a wide range of applications, such as soft robotics, biomedical, smart textiles and energy harvesting. Functional polymers possess dynamic physical and chemical properties, which make them suitable candidates for sensing and actuating tasks in response to external stimuli, such as radiation, temperature, chemical reaction, external force, magnetic and electric fields. This book focuses on the recent advancements in the modeling and analysis of functional polymer systems.

Listing 1 - 3 of 3
Sort by