Listing 1 - 4 of 4 |
Sort by
|
Choose an application
In recent years, metal halide perovskites have emerged as a rising star among semiconductor materials owing to their low cost, solution processability, and fascinating combination of material properties enabling a broad range of energy applications. Accompanied by the unprecedented success in the photovoltaic community, which has witnessed a certified power conversion efficiency of 23.7%, rapid advancement has also been achieved in the areas of light-emitting diodes, lasers, photodetectors, and solar-to-fuel energy conversion devices. Beyond the dominant format of polycrystalline perovskite thin films for solar cell applications, recent progress in metal halide perovskite crystals, ranging from nanocrystals to macroscopic single-crystals, has spurred a great deal of both scientific and industrial interest. Great research efforts have endeavored to develop new techniques for crystal growth and investigate the physical and chemical properties of the materials and explore their emerging applications. These exciting achievements call for a rationalization of the different forms of perovskite semiconductors beyond the widely used polycrystalline thin films. In the current Special Issue, “Metal Halide Perovskite Crystals: Growth Techniques, Properties and Emerging Applications”, we aim to provide a forum for the discussion and presentation of recent advances in the fields of research related to metal halide perovskite crystals.
lasers --- crystals --- metal halide perovskites --- optoelectronic devices --- light-emitting diodes --- semiconductors --- photovoltaics
Choose an application
Metal organic frameworks (MOFs) are a class of porous materials with a modular structure. This allows for very wide structural diversity and the possibility of synthesizing materials with tailored properties for advanced applications. Thus, MOF materials are the subject of intense research, with strong relevance to both science and technology. MOFs are formed by the assembly of two components: cluster or metal ion nodes, which are also called secondary building units (SBUs), and organic linkers between the SBUs, usually giving rise to crystalline structures with an open framework and significant porous texture development. The main aim of this Special Issue of Catalysts (ISSN 2073-4344) is to present the most relevant and recent insights in the field of the synthesis and characterization of MOFs and MOF-based materials for advanced applications, including adsorption, gas storage/capture, drug delivery, catalysis, photocatalysis, and/or chemical sensing.
Technology: general issues --- History of engineering & technology --- Materials science --- Metal–organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal–organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- metal-organic frameworks --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough --- n/a --- Metal-organic framework
Choose an application
Metal organic frameworks (MOFs) are a class of porous materials with a modular structure. This allows for very wide structural diversity and the possibility of synthesizing materials with tailored properties for advanced applications. Thus, MOF materials are the subject of intense research, with strong relevance to both science and technology. MOFs are formed by the assembly of two components: cluster or metal ion nodes, which are also called secondary building units (SBUs), and organic linkers between the SBUs, usually giving rise to crystalline structures with an open framework and significant porous texture development. The main aim of this Special Issue of Catalysts (ISSN 2073-4344) is to present the most relevant and recent insights in the field of the synthesis and characterization of MOFs and MOF-based materials for advanced applications, including adsorption, gas storage/capture, drug delivery, catalysis, photocatalysis, and/or chemical sensing.
Metal–organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal–organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- metal-organic frameworks --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough --- n/a --- Metal-organic framework
Choose an application
Metal organic frameworks (MOFs) are a class of porous materials with a modular structure. This allows for very wide structural diversity and the possibility of synthesizing materials with tailored properties for advanced applications. Thus, MOF materials are the subject of intense research, with strong relevance to both science and technology. MOFs are formed by the assembly of two components: cluster or metal ion nodes, which are also called secondary building units (SBUs), and organic linkers between the SBUs, usually giving rise to crystalline structures with an open framework and significant porous texture development. The main aim of this Special Issue of Catalysts (ISSN 2073-4344) is to present the most relevant and recent insights in the field of the synthesis and characterization of MOFs and MOF-based materials for advanced applications, including adsorption, gas storage/capture, drug delivery, catalysis, photocatalysis, and/or chemical sensing.
Technology: general issues --- History of engineering & technology --- Materials science --- Metal-organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal-organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- metal-organic frameworks --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough --- Metal-organic framework --- Lewis acid --- fructose --- 5-hydroxymethyl furfural --- biomass --- Metal-organic frameworks (MOFs) --- photocatalysis --- carbon dioxide reduction --- renewable energy --- heterogeneous catalysis --- metal organic framework --- surface modification --- Zinc glutarate --- CO2 fixation --- polycarbonate --- Mn-MOF-74 --- modification --- water resistance --- NH3-SCR performance --- environmental pollution --- filter --- gas sorption --- sensor --- hydrogen storage --- electrospinning --- one-pot hydrothermal --- immobilizing recombinant --- His-hCA II --- Ni-BTC nanorods --- metal-organic frameworks --- polyoxometalates --- hybrid materials --- synthesis --- catalysis --- heterogeneous catalyst --- aerobic oxidation --- cyclohexene --- metal organic frameworks --- NH2-MIL-125(Ti) --- water stability --- purification --- layered coordination polymer --- oxidative desulfurization --- denitrogenation extraction --- hydrogen peroxide --- lanthanides --- MOF --- catalyst --- microreactor --- kinetic studies --- metal organic frame works --- CO2 adsorption --- pre combustion --- gas membrane separation --- metal halide perovskites --- metal-organic framework --- fuel cell --- oxygen reduction reaction (ORR) --- metal organic frameworks (MOFs) --- hydrothermal synthesis --- coordination polymers --- crystal structures --- metal-organic frameworks --- carboxylate ligands --- olefin paraffin separations --- propyne --- propylene --- adsorption isotherms --- dynamic breakthrough
Listing 1 - 4 of 4 |
Sort by
|