Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
With pore sizes up to 100 nm, the term "nanoporous" covers a wide range of material classes. A broad field of applications has arisen from the diversity of unique structures and properties of nanoporous materials. Recent research spans the range from fundamental studies of the behavior of atoms and molecules in confined space, creative synthetic pathways for novel materials, to applications in high-performance technologies. This Special Issue collects current studies about the progress in the development, characterization, and application of nanoporous materials, including (but not restricted to) mesoporous silica, carbon and metal oxides, porous coordination polymers, metal organic frameworks (MOFs), and covalent organic frameworks (COFs), as well as materials exhibiting hierarchical porosity. Their functionalities show promise for fields such as energy storage/conversion (e.g., photocatalysis and battery electrodes), sensing, catalysis, and their sorption properties for N2, CO2, NOx, or H2O, to name just a few.
History of engineering & technology --- mesoporous silica --- organocatalysis --- host-guest materials --- magic-angle spinning NMR (MAS-NMR) --- nanoporous metal foam --- nanoshell --- buckling --- free vibration --- strain gradient theory --- first-order shear deformation theory --- SERS --- near-infrared --- crystal silicon photoluminescence --- porous silicon photonic crystals --- hot-spots --- mesoporous films --- direct growth --- esterification --- material formation --- porous organic polymers --- amine modification --- CO2 separation --- adsorption mechanism --- chemisorption of CO2 --- Birnessite --- nanoporous metal oxides --- impedance spectroscopy --- perovskite solar cell --- electron selective layer --- pinhole --- mesoporous TiO2 --- evaporation-induced self-assembly --- dip coating
Choose an application
This e-book presents a selection of papers focused on some novel aspects of electrodeposited coatings, in particular for medical applications. The biocoatings applied for surface modification of load-bearing implants are still being developed, especially for titanium implants, for which hundreds and thousands of possible technical solutions have been proposed using different techniques and materials. This book is a collection of papers that demonstrate appropriate attempts using various electrodeposition methods. The specific objectives are different, with several looking for improved bioactivity, another for antibacterial properties, and another for increased adhesion on the helix lines on dental implants. The e-book starts with a paper on the methodic development of electrodes for electrowinning. This is followed by paper on the real performance of the surface of dental implants, a subject not often addressed. The next paper focuses on electro-oxidation: a novel two-stage oxidation method, characteristic of the oxide layer on helix line of a model dental implant, and micro-arc oxidation of 3D printed titanium. The last paper focuses on coatings, describing the carbon nanotubes- (hydroxyapatite, chitosan), Eudragit-, and Fe-containing coatings. The e-book concludes with a review of all electrodeposition methods. It is a collection of papers describing novel results in electrodeposition biocoatings, which will be of interest for many scholars and researchers
Research & information: general --- hardness --- adhesion --- hydroxyapatite --- carbon nanotubes --- titanium --- biomedical applications --- chitosan --- Eudragit --- electrophoretic deposition --- nanoindentation --- pH-sensitive coatings --- wettability --- titanium alloys --- electrochemical oxidation --- nanotubular oxide layers --- microstructure --- nanomechanical properties --- corrosion resistance --- antibacterial protection --- cytotoxicity --- micro-arc oxidation --- composite oxide coatings --- properties --- coatings --- electrocathodic deposition --- plasma electrochemical oxidation --- electro-spark deposition --- electro-discharge deposition --- bioactivity --- antibacterial efficiency --- mechanical strength --- metal foam --- surface area --- electrowinning --- Cu electrodeposition --- EIS --- double electric layer capacitance --- dental implants --- corrosion --- ringer’s solution --- artificial saliva --- titanium oxide layers --- inductively coupled plasma mass spectrometry (ICP-MS) --- magnesium alloy --- iron --- degradation resistance --- cytocompatibility --- nanotubular oxide --- helix surfaces --- roughness --- corrosion properties --- n/a --- ringer's solution
Choose an application
With pore sizes up to 100 nm, the term "nanoporous" covers a wide range of material classes. A broad field of applications has arisen from the diversity of unique structures and properties of nanoporous materials. Recent research spans the range from fundamental studies of the behavior of atoms and molecules in confined space, creative synthetic pathways for novel materials, to applications in high-performance technologies. This Special Issue collects current studies about the progress in the development, characterization, and application of nanoporous materials, including (but not restricted to) mesoporous silica, carbon and metal oxides, porous coordination polymers, metal organic frameworks (MOFs), and covalent organic frameworks (COFs), as well as materials exhibiting hierarchical porosity. Their functionalities show promise for fields such as energy storage/conversion (e.g., photocatalysis and battery electrodes), sensing, catalysis, and their sorption properties for N2, CO2, NOx, or H2O, to name just a few.
History of engineering & technology --- mesoporous silica --- organocatalysis --- host–guest materials --- magic-angle spinning NMR (MAS-NMR) --- nanoporous metal foam --- nanoshell --- buckling --- free vibration --- strain gradient theory --- first-order shear deformation theory --- SERS --- near-infrared --- crystal silicon photoluminescence --- porous silicon photonic crystals --- hot-spots --- mesoporous films --- direct growth --- esterification --- material formation --- porous organic polymers --- amine modification --- CO2 separation --- adsorption mechanism --- chemisorption of CO2 --- Birnessite --- nanoporous metal oxides --- impedance spectroscopy --- perovskite solar cell --- electron selective layer --- pinhole --- mesoporous TiO2 --- evaporation-induced self-assembly --- dip coating --- n/a --- host-guest materials
Choose an application
With pore sizes up to 100 nm, the term "nanoporous" covers a wide range of material classes. A broad field of applications has arisen from the diversity of unique structures and properties of nanoporous materials. Recent research spans the range from fundamental studies of the behavior of atoms and molecules in confined space, creative synthetic pathways for novel materials, to applications in high-performance technologies. This Special Issue collects current studies about the progress in the development, characterization, and application of nanoporous materials, including (but not restricted to) mesoporous silica, carbon and metal oxides, porous coordination polymers, metal organic frameworks (MOFs), and covalent organic frameworks (COFs), as well as materials exhibiting hierarchical porosity. Their functionalities show promise for fields such as energy storage/conversion (e.g., photocatalysis and battery electrodes), sensing, catalysis, and their sorption properties for N2, CO2, NOx, or H2O, to name just a few.
mesoporous silica --- organocatalysis --- host–guest materials --- magic-angle spinning NMR (MAS-NMR) --- nanoporous metal foam --- nanoshell --- buckling --- free vibration --- strain gradient theory --- first-order shear deformation theory --- SERS --- near-infrared --- crystal silicon photoluminescence --- porous silicon photonic crystals --- hot-spots --- mesoporous films --- direct growth --- esterification --- material formation --- porous organic polymers --- amine modification --- CO2 separation --- adsorption mechanism --- chemisorption of CO2 --- Birnessite --- nanoporous metal oxides --- impedance spectroscopy --- perovskite solar cell --- electron selective layer --- pinhole --- mesoporous TiO2 --- evaporation-induced self-assembly --- dip coating --- n/a --- host-guest materials
Choose an application
This e-book presents a selection of papers focused on some novel aspects of electrodeposited coatings, in particular for medical applications. The biocoatings applied for surface modification of load-bearing implants are still being developed, especially for titanium implants, for which hundreds and thousands of possible technical solutions have been proposed using different techniques and materials. This book is a collection of papers that demonstrate appropriate attempts using various electrodeposition methods. The specific objectives are different, with several looking for improved bioactivity, another for antibacterial properties, and another for increased adhesion on the helix lines on dental implants. The e-book starts with a paper on the methodic development of electrodes for electrowinning. This is followed by paper on the real performance of the surface of dental implants, a subject not often addressed. The next paper focuses on electro-oxidation: a novel two-stage oxidation method, characteristic of the oxide layer on helix line of a model dental implant, and micro-arc oxidation of 3D printed titanium. The last paper focuses on coatings, describing the carbon nanotubes- (hydroxyapatite, chitosan), Eudragit-, and Fe-containing coatings. The e-book concludes with a review of all electrodeposition methods. It is a collection of papers describing novel results in electrodeposition biocoatings, which will be of interest for many scholars and researchers
hardness --- adhesion --- hydroxyapatite --- carbon nanotubes --- titanium --- biomedical applications --- chitosan --- Eudragit --- electrophoretic deposition --- nanoindentation --- pH-sensitive coatings --- wettability --- titanium alloys --- electrochemical oxidation --- nanotubular oxide layers --- microstructure --- nanomechanical properties --- corrosion resistance --- antibacterial protection --- cytotoxicity --- micro-arc oxidation --- composite oxide coatings --- properties --- coatings --- electrocathodic deposition --- plasma electrochemical oxidation --- electro-spark deposition --- electro-discharge deposition --- bioactivity --- antibacterial efficiency --- mechanical strength --- metal foam --- surface area --- electrowinning --- Cu electrodeposition --- EIS --- double electric layer capacitance --- dental implants --- corrosion --- ringer’s solution --- artificial saliva --- titanium oxide layers --- inductively coupled plasma mass spectrometry (ICP-MS) --- magnesium alloy --- iron --- degradation resistance --- cytocompatibility --- nanotubular oxide --- helix surfaces --- roughness --- corrosion properties --- n/a --- ringer's solution
Choose an application
This e-book presents a selection of papers focused on some novel aspects of electrodeposited coatings, in particular for medical applications. The biocoatings applied for surface modification of load-bearing implants are still being developed, especially for titanium implants, for which hundreds and thousands of possible technical solutions have been proposed using different techniques and materials. This book is a collection of papers that demonstrate appropriate attempts using various electrodeposition methods. The specific objectives are different, with several looking for improved bioactivity, another for antibacterial properties, and another for increased adhesion on the helix lines on dental implants. The e-book starts with a paper on the methodic development of electrodes for electrowinning. This is followed by paper on the real performance of the surface of dental implants, a subject not often addressed. The next paper focuses on electro-oxidation: a novel two-stage oxidation method, characteristic of the oxide layer on helix line of a model dental implant, and micro-arc oxidation of 3D printed titanium. The last paper focuses on coatings, describing the carbon nanotubes- (hydroxyapatite, chitosan), Eudragit-, and Fe-containing coatings. The e-book concludes with a review of all electrodeposition methods. It is a collection of papers describing novel results in electrodeposition biocoatings, which will be of interest for many scholars and researchers
Research & information: general --- hardness --- adhesion --- hydroxyapatite --- carbon nanotubes --- titanium --- biomedical applications --- chitosan --- Eudragit --- electrophoretic deposition --- nanoindentation --- pH-sensitive coatings --- wettability --- titanium alloys --- electrochemical oxidation --- nanotubular oxide layers --- microstructure --- nanomechanical properties --- corrosion resistance --- antibacterial protection --- cytotoxicity --- micro-arc oxidation --- composite oxide coatings --- properties --- coatings --- electrocathodic deposition --- plasma electrochemical oxidation --- electro-spark deposition --- electro-discharge deposition --- bioactivity --- antibacterial efficiency --- mechanical strength --- metal foam --- surface area --- electrowinning --- Cu electrodeposition --- EIS --- double electric layer capacitance --- dental implants --- corrosion --- ringer's solution --- artificial saliva --- titanium oxide layers --- inductively coupled plasma mass spectrometry (ICP-MS) --- magnesium alloy --- iron --- degradation resistance --- cytocompatibility --- nanotubular oxide --- helix surfaces --- roughness --- corrosion properties
Choose an application
This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.
n/a --- ionic conductivity --- cation mixing --- aliovalent substitution --- substituted barium indate --- thermal expansion --- impregnation --- Cr substitution --- chemical expansion --- ball milling --- lanthanum orthoniobate --- perovskite oxides --- thermogravimetric analysis --- Hebb-Wagner measurements --- samarium-doped ceria (SDC) --- impedance spectroscopy --- hydration --- nanocrystalline ceramics --- binary fluorides --- Ni-Cr-ferrite --- solid oxide fuel cells (SOFC) --- Mössbauer --- ceria --- current collector --- multifoil shape --- specific surface area of powders --- sol-gel --- molten salt synthesis --- Wulff shape --- relaxation experiments --- Ostwald ripening --- Solid Oxide Fuel Cells --- electronic conductivity --- proton ceramic fuel cells --- terbium orthoniobate --- water uptake --- high temperature proton conductors --- redox cycle --- metal foam --- protonic conductors --- protonic conductivity --- proton conductivity --- structure --- thin films --- e-beam physical vapor deposition --- TEC --- magnetic properties --- CTE --- coupled/decoupled ionic transport --- platelet morphology --- bismuth vanadate --- La-doped SrTiO3 --- Mössbauer
Choose an application
The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.
power-law distribution --- evanescent wave --- flow theory of plasticity --- free vibration characteristics --- neural networks --- geometrically nonlinear analysis --- finite element method --- stress concentration factor --- inhomogeneous composite materials --- circular plate --- porous materials --- minimum module approximation method --- ANFIS --- electroelastic solution --- functionally graded piezoelectric materials --- Love wave --- polynomial approach --- stepped FG paraboloidal shell --- material design --- damping coefficient --- spring stiffness technique --- Lamb wave --- pure bending --- general edge conditions --- residual stress --- graded finite elements --- large strain --- non-linear buckling analysis --- orthogonal stiffener --- combined mechanical loads --- functionally graded piezoelectric-piezomagnetic material --- functionally graded beams --- attenuation --- failure and damage --- analytical solution --- functionally graded materials --- elastoplastic analysis --- elastic foundation --- hollow disc --- different moduli in tension and compression --- external pressure --- functional graded saturated material --- bimodulus --- fuzzy logic --- truncated conical sandwich shell --- quadratic solid–shell elements --- functionally graded viscoelastic material --- finite element analysis --- residual strain --- neutral layer --- elliptical hole --- thin structures --- functionally graded plate --- inhomogeneity --- clustering --- metal foam core layer --- robotics and contact wear --- dispersion --- high order shear deformation theory --- finite elements
Choose an application
With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer.
Technology: general issues --- History of engineering & technology --- auxiliary feedwater system --- cavitation --- computational fluid dynamics --- in-service testing --- multiphase flow --- multi-stage orifice --- nonuniform metal foam --- melting heat transfer --- thermal energy storage --- conical swirl atomizer --- atomization --- CFD --- Eulerian model --- heat transfer coefficient --- micro-fins --- friction factor --- numerical methods --- micro- and macro-parameters of the atomized liquid --- mechanism of effervescent-swirl atomization --- efficiency of atomization process --- effervescent-swirl atomizer --- fixed-bed reactor --- wall structures --- complex particle shapes --- process intensification --- heat transfer --- photovoltaic cell efficiency --- thermal regulation --- energy and light harvesting --- irreversibility losses --- quantum dynamics --- nature-inspired mimicking --- heat transfer enhancement --- radiation insert --- numerical simulations --- performance evaluation criteria --- thermal efficiency --- particle sedimentation --- resistance force --- fractional-order integro-differential equation --- laplace transform --- Mittag–Leffler function --- block-pulse operational matrix --- Nu number --- microchannel heat sink --- trefoil ribs --- thermal enhancement --- thermal resistance --- triple-tube heat exchanger --- twisted fin array --- phase change material --- solidification --- nanofluids advantages and disadvantages --- thermal hydraulic performance --- vortex generators --- micro-channel
Choose an application
Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nanofluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering.
Research & information: general --- Physics --- coating flow --- free surface --- boundary layer --- stress singularity --- matched asymptotic expansions --- computational fluid dynamics --- turbulence --- rotating thermal convection --- Rayleigh–Bénard --- heat enhancement --- nanofluid --- circular pipe --- twisted tape --- porous media --- metal foam --- convection-driven dynamos --- numerical simulations --- bistability --- mean-field magnetohydrodynamics --- spherical shells --- stochastic equations --- equivalence of measures --- nature of turbulence --- critical Reynolds number --- thermovibrational convection --- gravity modulation --- thermofluid-dynamic distortions --- patterning behavior --- stratified mixing layer --- non-modal instability --- Kelvin-Helmholtz instability --- Holmboe instability --- rotating thermal magnetoconvection --- linear onset --- sphere --- Rayleigh–Bénard convection --- time periodical cooling --- Lattice Boltzmann method --- thermocapillary-driven convection --- half-zone liquid bridges --- particles --- coherent structures --- particle accumulation structure (PAS) --- high Prandtl number fluids --- plane layer --- circular translational vibrations --- thermal vibrational convection --- convective patterns --- n/a --- Rayleigh-Bénard --- Rayleigh-Bénard convection
Listing 1 - 10 of 17 | << page >> |
Sort by
|