Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Nanostructured materials exploit physical phenomena and mechanisms that cannot be derived by simply scaling down the associated bulk structures and phenomena; furthermore, new quantum effects come into play in nanosystems. The exploitation of these emerging nanoscale interactions prompts the innovative design of nanomaterials. Understanding the behavior of materials on all length scales—from the nanostructure up to the macroscopic response—is a critical challenge for materials science. Modern analytical technologies based on synchrotron radiation (SR) allow for the non-destructive investigation of the chemical, electronic, and magnetic structure of materials in any environment. SR facilities have developed revolutionary new ideas and experimental setups for characterizing nanomaterials, involving spectroscopy, diffraction, scatterings, microscopy, tomography, and all kinds of highly sophisticated combinations of such investigation techniques. This book is a collection of contributions addressing several aspects of synchrotron radiation as applied to the investigation of chemical, electronic, and magnetic structure of nanostructured materials. The results reported here provide not only an interesting and multidisciplinary overview of the chemicophysical investigations of nanostructured materials carried out by state-of-the-art SR-induced techniques, but also an exciting glance into the future perspectives of nanomaterial characterization methods.
binding energies --- electrochemical impedance spectroscopy --- laser heating --- crystallization kinetics --- Ge(001)-2 --- supercapacitor materials --- in situ X-ray photoelectron spectroscopy --- thermal expansion --- XPS --- self-assembling peptides --- multilayers --- magnetic annealing --- metallic glasses --- synchrotron radiation --- micro-mesoporous carbon electrode --- nuclear forward scattering --- NEXAFS --- synchrotron radiation induced spectroscopies --- bioactive materials --- nanostructures --- thin films --- cyclic voltammetry --- room temperature ionic liquids --- titanium alloy --- synchrotron pump-probe powder scattering --- thermal conductivity
Choose an application
Bionanoparticles such as microorganisms and exosomes are recognized as important targets for clinical applications, food safety, and environmental monitoring. Other nanoscale biological particles, including liposomes, micelles, and functionalized polymeric particles are widely used in nanomedicines. The recent development of microfluidic and nanofluidic technologies has enabled the separation and analysis of these species in a lab-on-a-chip platform, while there are still many challenges to address before these analytical tools can be adopted in practice. For example, the complex matrices within which these species reside in create a high background for their detection. Their small dimension and often low concentration demand creative strategies to amplify the sensing signal and enhance the detection speed. This Special Issue aims to recruit recent discoveries and developments of micro- and nanofluidic strategies for the processing and analysis of biological nanoparticles. The collection of papers will hopefully bring out more innovative ideas and fundamental insights to overcome the hurdles faced in the separation and detection of bionanoparticles.
n/a --- magnetic field --- microfluidic device --- ballpoint pen printing --- paper-based microfluidic device --- online analysis --- nanoporous membrane --- dielectric film --- digital microfluidic chip --- HIV diagnostics --- precipitation --- optically induced dielectrophoresis (ODEP) --- digital microfluidic device --- fluorescence --- ferrofluids --- cancer metastasis --- flow focusing --- image processing --- electrowetting --- light diffraction --- lensfree --- nanoparticle characterization --- multi-step assay --- cell isolation --- biomarker detection --- microparticles --- conductive electrode --- single particle analysis --- plastic wrap --- second-hand smoke --- flow control --- surface acoustic wave --- droplet actuation --- circulating tumour cells (CTCs) --- lipid nanoparticles --- crop disease --- cross-flow filtration --- oxidized hollow mesoporous carbon nanosphere --- microfluidic systems --- 3-ethenylpyridine --- microfluidic --- microfluidics --- COMSOL --- plug flow mixer
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
Technology: general issues --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- n/a
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- n/a
Choose an application
Water is indispensable to the functioning of most known life forms, and good water quality is essential to human health, social and economic development, and ecosystem functioning. Nonetheless, population growth has been leading to the degradation and depletion of fresh water resources. Under these circumstances, ensuring sufficient and safe water supplies for everyone is one of the Sustainable Development Goals (SDGs) set by the United Nations General Assembly in 2015 for the year 2030. For this goal to be achieved, the development and implementation of appropriate and efficient wastewater treatments that allow us to reduce water pollution is a major challenge.In view of the relevant contribution that polymers and polymeric materials may have in the conservation of the aquatic environment, namely by their application in wastewater treatment, original research and review papers on “Current trends and perspectives in the application of polymeric materials for wastewater treatment” were here brought together. For sure, this set of papers will be helpful and inspiring for readers interested in this topic.
Technology: general issues --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent --- waste silk --- dopamine --- iron particles --- wastewater treatment --- activated carbon microsphere --- sodium lignosulfonate --- Cr(VI) --- adsorption --- modified polymeric resin --- t-butyl phosphate impregnation --- polymer based adsorbents --- dye adsorption --- response surface methodology --- nano-MgO --- structural modification --- permeability --- antifouling --- color rejection --- POME --- fluoroquinolones --- ultrasound radiation --- mesoporous carbon --- desirability function --- thermodynamics --- wastewater --- cost analysis --- ciprofloxacin --- Polystyrene nanocomposite --- modifications --- characterizations --- antibiotics --- emerging contaminants --- pharmaceuticals --- polymeric adsorbents --- magnetization --- silver nanoparticles --- microfiltration --- membranes --- biofouling --- sputtering --- magnetite --- co-precipitation method --- Rhodamine B --- sodium dodecyl sulfate --- selective adsorption --- dysprosium --- neodymium --- fabric adsorbent --- radiation --- graft polymerization --- molecular imprinting --- polymer --- sertraline --- cross-reactivity --- SSRI --- template --- sorbent
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
Technology: general issues --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current-potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current-potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
Technology: general issues --- metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current–potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- n/a --- current-potential curve
Choose an application
The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.
metabolite sensors --- sensor biocompatibility --- ion selective electrodes --- foreign body reaction --- O2 --- glucose --- lactate --- biosensors --- bioelectrochemistry --- photo-biosensors --- enzyme --- biocatalysis --- electrochemical biosensors --- real-time --- continuous operation --- reagentless --- reusable --- calibration-free --- antibiofouling --- biosensor --- biomimetic membranes --- membrane-bound enzymes --- electrodes --- sulfur-containing nanomaterials --- metallic sulfide nanomaterials --- sulfur-containing quantum dots --- enzyme-based biosensors --- direct electron transfer (DET) --- redox enzymes --- nanostructured electrodes --- protein film voltammetry (PFV) --- glucose biosensors --- nanoporous metals --- nanoporous gold --- graphene --- carbon nanotube --- ordered mesoporous carbon --- additive manufacturing --- heme --- peroxidases --- semiconductors --- peroxidase mimics --- DNA assay --- nucleic acid --- isothermal --- signal amplification --- restriction endonuclease --- wearable biosensors --- metabolism --- remote monitoring --- sweat --- microfluidic --- 3D printing --- nanoparticle --- nanocomposite --- nanozyme --- synthesis --- catalytic properties --- nano-peroxidase --- nanooxidase --- nanolaccase --- electronanocatalyst --- amperometric (bio)sensors --- POC --- microfluidics --- immunosensor --- cancer --- biomarkers --- electrochemical DNA sensor --- nucleic acid sensor --- DNA --- RNA --- pathogen sensing --- 2D-materials --- field-effect transistor --- transition metal dichalcogenides --- black phosphorus --- phosphorene --- hexagonal boron nitride --- transition metal oxides --- current–potential curve --- multi-enzymatic cascades --- multianalyte detection --- mass-transfer-controlled amperometric response --- potentiometric coulometry --- MXenes --- 2D nanomaterials --- wearables --- electrochemistry --- bacteria --- electrochemical ELISA --- electrochemical immunoassays --- electrochemical aptamer-based assays --- chemical sensor --- field effect --- capacitive EIS sensor --- pH sensor --- enzyme biosensor --- label-free detection --- charged molecules --- DNA biosensor --- protein detection --- forensics --- biometrics --- cybersecurity --- fingerprints --- blood --- cipher --- non-invasive biosensors --- human physiological fluids --- tears --- saliva --- urine --- n/a --- current-potential curve
Choose an application
Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscopies, and differential EC mass spectrometry (DEMS). EC-SS indirectly (and often unconsciously) receives a great boost from the requirement for rational design of energy conversion and storage devices for the next generation of energetic landscapes. As a matter of fact, the number of material science groups deeply involved in such a challenging field has tremendously expanded and, within such a panorama, EC and SS investigations are intimately combined in a huge number of papers. The aim of this Special Issue is to offer an open access forum where researchers in the field of electrochemistry, surface science, and materials science could outline the great advances that can be reached by exploiting EC-SS approaches. Papers addressing both the basic science and more applied issues in the field of EC-SS and energy conversion and storage materials have been published in this Special Issue.
Pd thin films --- n/a --- Auger-Electron Spectroscopy --- benchmarking --- potential-dependent structures --- CO electro-oxidation --- surface reconstruction --- photo-electrochemistry --- nitrogen doping --- potential stepping --- DFT --- nanoparticles --- carbon nanofiber --- Pd --- gas diffusion electrode --- flexible ITO --- UPS --- palladium --- Lead OPD --- formic acid oxidation --- cobalt oxide --- adsorbed OH --- electrochemistry --- Pt --- mesopore --- DMFC --- pH and concentration effects --- solvothermal method --- direct methanol fuel cells --- EF-PEEM --- PVDF --- self-assembly --- PEMFC --- hard X rays --- photochemistry --- EQCM --- potential cycling --- surface alloy --- near ambient pressure XPS --- cobalt-based electrocatalyst --- silver single crystals --- Cu(111) --- electrodeposited alloys --- Pt single-crystal electrodes --- SOFC --- TiO2 --- oxygen evolution reaction --- silicon nanoparticles --- pump & --- graphitization --- in situ EC-STM --- oxygen reduction --- gold --- diazonium salts --- Au --- micropore --- solid/liquid interface --- XPS --- XAFS --- surface chemistry --- electrosynthesis --- porous fiber --- surface science --- click chemistry --- adhesion --- in situ --- methanol oxidation reaction --- hydroxyl radical --- mass transport --- free electron laser --- cyclic voltammetry --- redox properties --- electro-oxidation --- X-ray absorption spectroscopy --- hydrogen adsorption --- electrodeposition --- electrocatalysis --- Ordered mesoporous carbon --- Corrosion Protection --- electrochemical interface --- cyclic voltammetry (CV) --- FEXRAV --- photoelectron simulations --- Pt–Ru catalysts --- d-band theory --- bimetallic alloy --- photoconversion --- ordered mesoporous carbons --- carbon nanofibers (CNFs) --- platinum --- water splitting --- Surface Modification --- EPR spectroscopy --- scanning photoelectron microscopy --- model catalyst --- energy dispersive --- porphyrins --- combined non-covalent control --- AES --- spin-coating --- SAMs --- water oxidation --- in-situ X-ray diffraction --- Au nanocrystals --- model systems --- platinum single crystals --- cathode --- redox monolayers --- surface nanostructures --- bifunctional oxygen electrode --- polymer --- photoelectrochemistry --- metal-electrolyte interface --- electrocatalysts --- APTES --- porogen --- electrophoretic deposition --- thin-films --- ammonia activation --- graphene --- ORR --- polypyrrole --- iridium --- surface area --- reduced graphene oxide --- Magnetite --- Platinum --- electrospinning --- catalysts --- Blackening of Steel --- switchable surfaces --- in situ ambient pressure XPS --- fuel cells --- methanol oxidation --- quick-XAS --- nickel --- CO oxidation --- solid oxide fuel cells --- operando --- probe --- CdS --- alkanthiols --- ECALE --- alkoxyamine surfaces --- underpotential deposition (upd) --- Pt-Ru catalysts
Listing 1 - 9 of 9 |
Sort by
|