Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2022 (2)

Listing 1 - 2 of 2
Sort by

Book
Acoustic Properties of Absorbing Materials
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thanks to the progress made in materials research and to the introduction of innovative manufacturing technologies, a wide range of sound-absorbing elements are currently available to adjust the acoustic features of an environment. Nowadays, performance is only one of the required specifications, together with environmental compatibility, longevity, and affordable cost. This book collects the most recent advances in the broad-spectrum characterization of sound-absorbing materials used in civil, industrial, and tertiary applications, by means of experimental, numerical, or theoretical studies.

Keywords

Technology: general issues --- History of engineering & technology --- hollow perforated spherical structure with extended tubes --- low frequency sound absorption --- melamine foam --- wideband sound absorber --- speech clarity --- bass ratio --- sound absorption --- reverberation time --- acoustics --- aerogels --- modeling --- fiber --- porous materials --- acoustic measurements --- sound absorption coefficient --- cement-based materials --- building materials --- pervious concrete --- acoustic concrete --- household end-of-life materials --- building retrofitting --- sound insulation --- vulnerable houses --- circular economy --- egg-box --- cardboard --- textile waste --- reuse --- shunted loudspeaker --- optimal sound absorption --- fully exhaustive method --- steel industry by-products --- sound reduction index --- granular materials --- inverse method --- cross laminated timber --- impact noise --- rubber ball --- sustainable --- timber --- perforated plate --- stepwise apertures --- low frequency --- membranes --- measurement method --- transmission loss --- simulations --- experiment --- scattering effect --- diffusion coefficient --- reflecting panels --- QRD --- ISO 17497 --- hollow perforated spherical structure with extended tubes --- low frequency sound absorption --- melamine foam --- wideband sound absorber --- speech clarity --- bass ratio --- sound absorption --- reverberation time --- acoustics --- aerogels --- modeling --- fiber --- porous materials --- acoustic measurements --- sound absorption coefficient --- cement-based materials --- building materials --- pervious concrete --- acoustic concrete --- household end-of-life materials --- building retrofitting --- sound insulation --- vulnerable houses --- circular economy --- egg-box --- cardboard --- textile waste --- reuse --- shunted loudspeaker --- optimal sound absorption --- fully exhaustive method --- steel industry by-products --- sound reduction index --- granular materials --- inverse method --- cross laminated timber --- impact noise --- rubber ball --- sustainable --- timber --- perforated plate --- stepwise apertures --- low frequency --- membranes --- measurement method --- transmission loss --- simulations --- experiment --- scattering effect --- diffusion coefficient --- reflecting panels --- QRD --- ISO 17497


Book
Acoustic Properties of Absorbing Materials
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thanks to the progress made in materials research and to the introduction of innovative manufacturing technologies, a wide range of sound-absorbing elements are currently available to adjust the acoustic features of an environment. Nowadays, performance is only one of the required specifications, together with environmental compatibility, longevity, and affordable cost. This book collects the most recent advances in the broad-spectrum characterization of sound-absorbing materials used in civil, industrial, and tertiary applications, by means of experimental, numerical, or theoretical studies.

Listing 1 - 2 of 2
Sort by