Narrow your search

Library

FARO (13)

KU Leuven (13)

LUCA School of Arts (13)

Odisee (13)

Thomas More Kempen (13)

Thomas More Mechelen (13)

UCLL (13)

ULiège (13)

VIVES (13)

Vlaams Parlement (13)

More...

Resource type

book (34)


Language

English (34)


Year
From To Submit

2022 (3)

2021 (23)

2020 (6)

2019 (2)

Listing 1 - 10 of 34 << page
of 4
>>
Sort by

Book
Influence of strain on the functionality of ink-jet printed thin films and devices on flexible substrates
Author:
ISBN: 1000086125 3731508532 Year: 2019 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ink-jet printed devices on the flexible substrate are inexpensive and large area compatible as compared to rigid substrates. However, during fabrication and service they are subjected to complex strains, resulting in crack formation or delamination within the layers, affecting the device performance. Therefore, it is necessary to understand their failure mechanisms by correlating their electrical or structural properties with applied strain, supported by detailed microstructural investigations.


Book
Advances in Biological Tissue Biomechanics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advanced experimental and computational biomechanics have become essential components to better understand the physiological and pathological conditions of biological tissues in the human body. Recent advances in medical imaging modalities, image segmentation, tissue characterization experiments, and predictive computer simulations have made major contributions to transforming current therapeutic paradigms, towards the facilitation of patient-specific diagnostics and individualized surgery planning. This Special Issue of Bioengineering on Advances in Biological Tissue Biomechanics, therefore, focuses on research dealing with cutting-edge experimental and computational methodologies for biomechanical investigations of tissues in the human body system across multiple spatial and temporal scales.

Keywords

Research & information: general --- Biology, life sciences --- computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling --- computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling


Book
Advances in Biological Tissue Biomechanics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advanced experimental and computational biomechanics have become essential components to better understand the physiological and pathological conditions of biological tissues in the human body. Recent advances in medical imaging modalities, image segmentation, tissue characterization experiments, and predictive computer simulations have made major contributions to transforming current therapeutic paradigms, towards the facilitation of patient-specific diagnostics and individualized surgery planning. This Special Issue of Bioengineering on Advances in Biological Tissue Biomechanics, therefore, focuses on research dealing with cutting-edge experimental and computational methodologies for biomechanical investigations of tissues in the human body system across multiple spatial and temporal scales.

Keywords

Research & information: general --- Biology, life sciences --- computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling


Book
Advances in Biological Tissue Biomechanics
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advanced experimental and computational biomechanics have become essential components to better understand the physiological and pathological conditions of biological tissues in the human body. Recent advances in medical imaging modalities, image segmentation, tissue characterization experiments, and predictive computer simulations have made major contributions to transforming current therapeutic paradigms, towards the facilitation of patient-specific diagnostics and individualized surgery planning. This Special Issue of Bioengineering on Advances in Biological Tissue Biomechanics, therefore, focuses on research dealing with cutting-edge experimental and computational methodologies for biomechanical investigations of tissues in the human body system across multiple spatial and temporal scales.

Keywords

computational fluid dynamics --- bileaflet mechanical heart valve --- adverse hemodynamics --- transvalvular pressure gradients --- turbulent shear stresses --- blood damage --- platelet activation --- aortic valve --- calcification --- elastin degradation --- leaflet --- curvature --- biomarker --- early detection --- porcine brain --- mechanical behavior --- hydration effects --- Split-Hopkinson pressure bar --- micromechanics --- finite element analysis --- collagen crimp --- elastin --- microstructures --- force-controlled mechanical testing --- the tricuspid valve --- functional tricuspid regurgitation --- cardiovascular imaging --- mechanical characterization --- in-vitro experiments --- constitutive modeling --- geometrical modeling --- finite element modeling --- isogeometric analysis (IGA) --- biaxial mechanical characterization --- fluid-structure interactions --- material anisotropy --- sub-valvular components --- soft tissue --- liver --- high-rate compression --- polymeric split-Hopkinson pressure bar --- pentagalloyl glucose --- aneurysm --- enzyme --- biomechanics --- aorta --- biaxial mechanical testing --- cardiac valves --- osmotic swelling --- parameter estimation --- nonlinear preconditioning --- gradient-based minimization --- cirrus --- myocardium --- stiffness --- viscoelastic property --- anisotropy --- fibrosis --- the mitral valve --- collagen fiber architecture --- glycosaminoglycan --- uniaxial mechanical testing --- in-vitro flow loops --- polarized spatial frequency domain imaging --- tricuspid regurgitation --- spatial alignment --- collagen fiber reorientation --- in vivo stress/strain quantification --- constitutive models --- soft tissues --- growth and remodeling (G & R) --- multiscale biomechanics --- patient-specific modeling


Book
Advances in Manufacturing and Characterization of Functional Polyesters
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, we have assisted the remarkable growth in the use of functional polyesters. This book gathers novel research works dealing with the manufacturing and characterization of polyesters that have been functionalized by synthesis, copolymerization, additives (at micro- and nanoscale), surface modification, among other methodologies, to tailor desired properties in terms of mechanical, chemical, thermal, and barrier properties, biodegradation, and biocompatibility. Thus, Advances in Manufacturing and Characterization of Functional Polyesters will serve to guide a diverse audience of polymer scientists and engineers and provides an update of the “state-of-the-art” knowledge on functional polyesters.

Keywords

Research & information: general --- poly(lactic acid), halloysite nanotubes --- mechanical characterization --- morphology --- thermal characterization --- bio-based --- poly(ethyelene terephthalate)-PET --- poly(amide) 1010-PA1010 --- mechanical properties --- compatibilization --- Xibond™ 920 --- PLA --- OLA --- impact modifier --- shape memory --- packaging applications --- isodimorphism --- random copolymers --- crystallization --- nucleation --- growth rate --- bio-PET --- r-PET --- chain extenders --- reactive extrusion --- secondary recycling --- food packaging --- recycled poly(ethylene terephthalate) --- rPET --- Calcium terephthalate salts --- high performance nanocomposites --- flax --- green composites --- fiber pretreatment --- almond shell waste --- reinforcing --- polyester-based biocomposites --- physicochemical properties --- disintegration --- biopolymers composites --- MgO nanoparticles --- MgO whiskers --- in vitro degradation --- in vivo degradation --- P(3HB-co-3HHx) --- nHA --- nanocomposites --- bone reconstruction --- biomedical polymers --- hydroxyapatite --- halloysite --- Bayesian reconstruction --- homogeneity --- porous materials --- polyester fibrous materials --- copolyester --- dimensional stability --- flexible optical devices --- uniaxial stretching --- birefringence --- and barrier properties --- poly(lactic acid), halloysite nanotubes --- mechanical characterization --- morphology --- thermal characterization --- bio-based --- poly(ethyelene terephthalate)-PET --- poly(amide) 1010-PA1010 --- mechanical properties --- compatibilization --- Xibond™ 920 --- PLA --- OLA --- impact modifier --- shape memory --- packaging applications --- isodimorphism --- random copolymers --- crystallization --- nucleation --- growth rate --- bio-PET --- r-PET --- chain extenders --- reactive extrusion --- secondary recycling --- food packaging --- recycled poly(ethylene terephthalate) --- rPET --- Calcium terephthalate salts --- high performance nanocomposites --- flax --- green composites --- fiber pretreatment --- almond shell waste --- reinforcing --- polyester-based biocomposites --- physicochemical properties --- disintegration --- biopolymers composites --- MgO nanoparticles --- MgO whiskers --- in vitro degradation --- in vivo degradation --- P(3HB-co-3HHx) --- nHA --- nanocomposites --- bone reconstruction --- biomedical polymers --- hydroxyapatite --- halloysite --- Bayesian reconstruction --- homogeneity --- porous materials --- polyester fibrous materials --- copolyester --- dimensional stability --- flexible optical devices --- uniaxial stretching --- birefringence --- and barrier properties


Book
Titanium Alloys for Biomedical Implants and Devices
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.

Keywords

History of engineering & technology --- selective laser melting --- gradient structure --- porous biomaterial --- Ti6Al4V --- mechanical properties --- osteoblast --- biomechanics --- dental implant(s) --- in vitro --- systematic reviews --- evidence-based medicine --- atrophic maxilla --- titanium hybrid-plates --- finite element analysis --- biomechanical analysis --- single-point incremental forming --- AHP --- cranioplasty plates --- decision-making --- titanium alloys --- medical devices --- machining --- titanium --- temperature --- strain --- grain refinement --- ultrafine --- nanocrystalline --- mechanical characterization --- press-fit --- primary stability --- Ti-6Al-4V --- additive manufacturing --- selective laser melting (SLM) --- electron beam melting (EBM) --- direct metal deposition (DMD) --- wire and arc additive manufacturing (WAAM) --- diffraction line profile analysis --- extended convolution multiple whole profile (eCMWP) --- implanted electrodes --- electrical stimulation --- corrosion --- mandibular reconstruction --- scaffolds --- reconstruction plate --- 3D printing --- titanium alloy --- Titanium alloys --- Ti-6Al-4V-ELI --- fatigue --- laser cutting --- post-processing --- α’-martensite --- HAZ --- barrel grinding --- notch --- fracture --- selective laser melting --- gradient structure --- porous biomaterial --- Ti6Al4V --- mechanical properties --- osteoblast --- biomechanics --- dental implant(s) --- in vitro --- systematic reviews --- evidence-based medicine --- atrophic maxilla --- titanium hybrid-plates --- finite element analysis --- biomechanical analysis --- single-point incremental forming --- AHP --- cranioplasty plates --- decision-making --- titanium alloys --- medical devices --- machining --- titanium --- temperature --- strain --- grain refinement --- ultrafine --- nanocrystalline --- mechanical characterization --- press-fit --- primary stability --- Ti-6Al-4V --- additive manufacturing --- selective laser melting (SLM) --- electron beam melting (EBM) --- direct metal deposition (DMD) --- wire and arc additive manufacturing (WAAM) --- diffraction line profile analysis --- extended convolution multiple whole profile (eCMWP) --- implanted electrodes --- electrical stimulation --- corrosion --- mandibular reconstruction --- scaffolds --- reconstruction plate --- 3D printing --- titanium alloy --- Titanium alloys --- Ti-6Al-4V-ELI --- fatigue --- laser cutting --- post-processing --- α’-martensite --- HAZ --- barrel grinding --- notch --- fracture


Book
Titanium Alloys for Biomedical Implants and Devices
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.


Book
Advances in Low-carbon and Stainless Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Metals was dedicated to recent advances in low-carbon and stainless steels. Although these types of steels are not new, they are still receiving considerable attention from both research and industry sectors due to their wide range of applications and their complex microstructure and behavior under different conditions. The microstructure of low-carbon and stainless steels resulting from solidification, phase transformation, and hot working is complex, which, in turn, affect their performance under different working conditions. A detailed understanding of the microstructure, properties, and performance for these steels has been the aim of steel scientists for a long time. This Issue received quality papers on different aspects of these steels including their solidification, thermomechanical processing, phase transformation, texture, etc., and their mechanical and corrosion behaviors.


Book
Natural Fibres and their Composites
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.


Book
Advances in Manufacturing and Characterization of Functional Polyesters
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, we have assisted the remarkable growth in the use of functional polyesters. This book gathers novel research works dealing with the manufacturing and characterization of polyesters that have been functionalized by synthesis, copolymerization, additives (at micro- and nanoscale), surface modification, among other methodologies, to tailor desired properties in terms of mechanical, chemical, thermal, and barrier properties, biodegradation, and biocompatibility. Thus, Advances in Manufacturing and Characterization of Functional Polyesters will serve to guide a diverse audience of polymer scientists and engineers and provides an update of the “state-of-the-art” knowledge on functional polyesters.

Listing 1 - 10 of 34 << page
of 4
>>
Sort by