Listing 1 - 10 of 35 | << page >> |
Sort by
|
Choose an application
In the first decades of the current millennium, the contribution of photovoltaic and wind energy systems to power generation capacity has grown extraordinarily all around the world; in some countries, these systems have become two of the most relevant sources to meet the needs of energy supply. This Special Issue deals with all aspects of the development, implementation, and exploitation of systems and installations that operate with both sources of energy.
wind energy conversion system --- distributed control --- battery energy storage system --- consensus algorithm --- photovoltaic --- voltage stability --- grid capacity --- penetration level --- frequency stability --- Egypt’s national grid --- renewable energies --- photovoltaic (PV) --- energy challenge --- policy options --- technological development --- market development --- battery storage --- concentrated solar power (CSP), installed capacity --- solar energy resources --- solar thermal plants --- thermal energy storage (TES) --- maximum power point (MPP) --- maximum power point tracking (MPPT) --- perturbe and observe (P& --- O) --- incremental conductance (IC) --- off-shore wind farms --- wind farm aggregation --- admittance model order reduction --- HVDC diode rectifiers --- grid-forming wind turbines --- efficiency improvement --- photovoltaic inverters --- parallel inverters --- wind turbine emulator --- wind turbine energy systems --- photovoltaics --- two-stage grid-connected PV inverters --- reduced DC-link --- sensorless MPPT
Choose an application
In the first decades of the current millennium, the contribution of photovoltaic and wind energy systems to power generation capacity has grown extraordinarily all around the world; in some countries, these systems have become two of the most relevant sources to meet the needs of energy supply. This Special Issue deals with all aspects of the development, implementation, and exploitation of systems and installations that operate with both sources of energy.
Research & information: general --- Technology: general issues --- wind energy conversion system --- distributed control --- battery energy storage system --- consensus algorithm --- photovoltaic --- voltage stability --- grid capacity --- penetration level --- frequency stability --- Egypt’s national grid --- renewable energies --- photovoltaic (PV) --- energy challenge --- policy options --- technological development --- market development --- battery storage --- concentrated solar power (CSP), installed capacity --- solar energy resources --- solar thermal plants --- thermal energy storage (TES) --- maximum power point (MPP) --- maximum power point tracking (MPPT) --- perturbe and observe (P& --- O) --- incremental conductance (IC) --- off-shore wind farms --- wind farm aggregation --- admittance model order reduction --- HVDC diode rectifiers --- grid-forming wind turbines --- efficiency improvement --- photovoltaic inverters --- parallel inverters --- wind turbine emulator --- wind turbine energy systems --- photovoltaics --- two-stage grid-connected PV inverters --- reduced DC-link --- sensorless MPPT
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
History of engineering & technology --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- n/a
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law --- n/a
Choose an application
This second Special Issue connects both the fundamental and application aspects of thermomechanical machines and processes. Among them, engines have the largest place (Diesel, Lenoir, Brayton, Stirling), even if their environmental aspects are questionable for the future. Mechanical and chemical processes as well as quantum processes that could be important in the near future are considered from a thermodynamical point of view as well as for applications and their relevance to quantum thermodynamics. New insights are reported regarding more classical approaches: Finite Time Thermodynamics F.T.T.; Finite Speed thermodynamics F.S.T.; Finite Dimensions Optimal Thermodynamics F.D.O.T. The evolution of the research resulting from this second Special Issue ranges from basic cycles to complex systems and the development of various new branches of thermodynamics.
combined cycle --- inverse Brayton cycle --- regenerative Brayton cycle --- power output --- thermal efficiency --- finite time thermodynamics --- closed simple Brayton cycle --- power density --- ecological function --- multi-objective optimization --- quantum thermodynamics --- quantum circuit --- open quantum system --- isothermal process --- IBM quantum computer --- Stirling refrigerator --- thermodynamic analysis --- numerical model --- imperfect regeneration --- irreversible Lenoir cycle --- cycle power --- heat conductance distribution --- performance optimization --- irreversible Carnot engine --- optimization --- thermodynamics with finite speed --- internal and external irreversibilities --- entropy generation calculation --- thermodynamics in finite time --- irreversible Diesel cycle --- Carnot cycle --- Carnot efficiency --- thermal entropy --- chemical entropy --- mechanical entropy --- thermal exergy --- chemical exergy --- mechanical exergy --- metabolic reactions --- Carnot engine --- Chambadal model --- entropy production action --- efficiency at maximum power --- n/a
Choose an application
This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.
History of engineering & technology --- thermodynamics --- optimization --- entropy analysis --- Carnot engine --- modelling with time durations --- steady-state modelling --- transient conditions --- converter irreversibility --- sequential optimization --- Finite physical Dimensions Optimal Thermodynamics --- global efficiency --- energy efficiency --- heat engine --- heat pump --- utilization --- Carnot efficiency --- comparison --- thermal system --- cycle analysis --- second law of thermodynamics --- Clausius Statement --- theorem of the equivalence of transformations --- linear irreversible thermodynamics --- maximum power output --- maximum ecological Function --- maximum efficient power function --- enzymatic reaction model --- ocean thermal energy conversion (OTEC) --- plate heat exchanger --- finite-time thermodynamics --- heat transfer entropy --- entropy production --- new efficiency limits --- two-stage LNG compressor --- energy losses --- exergy destruction --- exergy efficiency --- Stirling cycle --- refrigerator --- heat exchanger --- second law
Choose an application
This second Special Issue connects both the fundamental and application aspects of thermomechanical machines and processes. Among them, engines have the largest place (Diesel, Lenoir, Brayton, Stirling), even if their environmental aspects are questionable for the future. Mechanical and chemical processes as well as quantum processes that could be important in the near future are considered from a thermodynamical point of view as well as for applications and their relevance to quantum thermodynamics. New insights are reported regarding more classical approaches: Finite Time Thermodynamics F.T.T.; Finite Speed thermodynamics F.S.T.; Finite Dimensions Optimal Thermodynamics F.D.O.T. The evolution of the research resulting from this second Special Issue ranges from basic cycles to complex systems and the development of various new branches of thermodynamics.
Research & information: general --- combined cycle --- inverse Brayton cycle --- regenerative Brayton cycle --- power output --- thermal efficiency --- finite time thermodynamics --- closed simple Brayton cycle --- power density --- ecological function --- multi-objective optimization --- quantum thermodynamics --- quantum circuit --- open quantum system --- isothermal process --- IBM quantum computer --- Stirling refrigerator --- thermodynamic analysis --- numerical model --- imperfect regeneration --- irreversible Lenoir cycle --- cycle power --- heat conductance distribution --- performance optimization --- irreversible Carnot engine --- optimization --- thermodynamics with finite speed --- internal and external irreversibilities --- entropy generation calculation --- thermodynamics in finite time --- irreversible Diesel cycle --- Carnot cycle --- Carnot efficiency --- thermal entropy --- chemical entropy --- mechanical entropy --- thermal exergy --- chemical exergy --- mechanical exergy --- metabolic reactions --- Carnot engine --- Chambadal model --- entropy production action --- efficiency at maximum power
Choose an application
Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.
fault diagnosis --- modeling --- simulation --- fault tree analysis --- photovoltaic system --- Bartlett’s test --- metaheuristic --- population density --- spatial analyses --- AC parameters --- parameter estimation --- fiber reinforced polymeric plastic (FRP) --- Hartigan’s dip test --- energy --- image processing --- real data --- photovoltaic (PV) systems monitoring --- forecast --- photovoltaic plants --- system --- graphical malfunction detection --- defects --- STATCOM --- photo-generated current --- performance analysis --- photovoltaic module performance --- solar energy --- urban context --- thermal interaction --- underdamped oscillation --- reliability --- membership algorithm --- photovoltaic systems --- availability --- fuzzy logic controller --- ANOVA --- solar farm --- energy yield --- cluster analysis --- photovoltaics --- annual yield --- residential buildings --- PV array --- PV system --- dc-dc converter --- quasi-opposition based learning --- grid-connected --- performance ratio --- organic soiling --- vegetated/green roof --- conventional roof membrane --- UV-fluorescence imaging --- PV thermal performance --- PV systems --- failure mode and effect analysis --- ageing and degradation of PV-modules --- sheet molding compound FRP --- Jarque-Bera’s test --- Tukey’s test --- technical costs --- Kruskal-Wallis’ test --- improved cuckoo search algorithm --- PV energy performance --- pultruded FRP --- cracks --- maximum power point tracking (MPPT) --- structural design --- software development --- floating PV generation structure --- malfunction detection --- modules --- photovoltaic performance --- maximum power point --- GIS --- impedance spectroscopy --- floating PV systems (FPV) --- solar cells --- Renewable Energy --- loss analysis --- shade resilience --- Scanning Electron Microscopy (SEM) --- failure detection --- optimization problem --- failure rates --- FCM algorithm --- stability analysis --- reactive power support --- mooring system --- buck converter --- Mood’s Median test --- photovoltaic modeling --- module architecture --- PV module --- data analysis --- partial shading --- opposition-based learning --- silicon --- floating PV module (FPVM) --- electroluminescence --- urban compactness
Choose an application
The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples.
Economics, finance, business & management --- macroentropy --- microentropy --- endoreversible engine --- reversible computing --- Landauer’s principle --- piston motion optimization --- endoreversible thermodynamics --- stirling engine --- irreversibility --- power --- efficiency --- optimization --- generalized radiative heat transfer law --- optimal motion path --- maximum work output --- elimination method --- finite time thermodynamics --- thermodynamics --- economics --- optimal processes --- n/a --- averaged --- heat transfer --- cyclic mode --- simulation --- modeling --- reconstruction --- nonequilibrium thermodynamics --- entropy production --- contact temperature --- quantum thermodynamics --- maximum power --- shortcut to adiabaticity --- quantum friction --- Otto cycle --- quantum engine --- quantum refrigerator --- finite-time thermodynamics --- sulfuric acid decomposition --- tubular plug-flow reactor --- entropy generation rate --- SO2 yield --- multi-objective optimization --- optimal control --- thermodynamic cycles --- thermodynamic length --- hydrogen atom --- nano-size engines --- a-thermal cycle --- heat engines --- cooling --- very long timescales --- slow time --- ideal gas law --- new and modified variables --- Silicon–Germanium alloys --- minimum of thermal conductivity --- efficiency of thermoelectric systems --- minimal energy dissipation --- radiative energy transfer --- radiative entropy transfer --- two-stream grey atmosphere --- energy flux density --- entropy flux density --- generalized winds --- conservatively perturbed equilibrium --- extreme value --- momentary equilibrium --- information geometry of thermodynamics --- thermodynamic curvature --- critical phenomena --- binary fluids --- van der Waals equation --- quantum heat engine --- carnot cycle --- otto cycle --- multiobjective optimization --- Pareto front --- stability --- maximum power regime --- entropy behavior --- biophysics --- biochemistry --- dynamical systems --- diversity --- complexity --- path information --- calorimetry --- entropy flow --- biological communities --- reacting systems --- Landauer's principle --- Silicon-Germanium alloys
Choose an application
Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.
distributed measurement systems --- open-source platform --- n/a --- FPGA --- technology convergence --- distributed energy resource --- vision system --- infrared --- DC/DC converter --- modified sliding window algorithm --- virtual sensor --- open platform --- context --- maximum power point tracking (MPPT) --- ontology --- Python --- EPICS --- human-computer interface (HCI) --- visual algorithms --- open hardware --- automated vehicle --- interleaved --- electromyogram (EMG) --- sensor detection --- smart farming --- digital signal controllers --- blockchain --- PiCamera --- eye tracking --- smart cities --- Arduino --- smart converter --- OPC UA --- Field Programmable Gate Array (FPGA) --- wireless sensor networks --- Raspberry Pi --- BeagleBoard --- service learning --- embedded systems education --- individual management of livestock --- robotics --- sensor networks --- dsPIC --- thermal imaging --- photovoltaic (PV) system --- hardware trojan taxonomy --- science teaching --- side channel analysis --- coalition --- electrooculogram (EOG) --- automation networks --- robotic tool --- cloud computing --- Java --- industry 4.0 --- teaching robotics --- Digital Signal Processor (DSP) --- piecewise linear approximation (PLA) --- Internet of Things --- Cloud of Things --- STEM --- support vector regression --- cyber-physical systems --- interaction --- node-RED --- momentum data sensing --- remote sensing platform
Listing 1 - 10 of 35 | << page >> |
Sort by
|