Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The breakup of the Space Shuttle Columbia as it reentered Earth's atmosphere on February 1, 2003, reminded the public--and NASA--of the grave risks posed to spacecraft by everything from insulating foam to space debris. Here, Alan Tribble presents a singular, up-to-date account of a wide range of less conspicuous but no less consequential environmental effects that can damage or cause poor performance of orbiting spacecraft. Conveying a wealth of insight into the nature of the space environment and how spacecraft interact with it, he covers design modifications aimed at eliminating or reducing such environmental effects as solar absorptance increases caused by self-contamination, materials erosion by atomic oxygen, electrical discharges due to spacecraft charging, degradation of electrical circuits by radiation, and bombardment by micrometeorites. This book is unique in that it bridges the gap between studies of the space environment as performed by space physicists and spacecraft design engineering as practiced by aerospace engineers.
Space vehicles --- Space environment. --- Medi ambient espacial --- Vehicles espacials --- Compton effect. --- Debye length. --- Earth shielding. --- activation energy. --- alpha radiation. --- burnout. --- coronal mass ejection. --- displacement damage. --- electrical ground. --- galactic cosmic ray. --- gravitational focusing. --- hydrazine. --- ideal gas law. --- impact cratering. --- latchup. --- launch facility. --- magnetopause. --- magnetosphere. --- mass density. --- nuclear weapons. --- obscuration. --- outgassing. --- pair production. --- reaction efficiency (RE). --- residence time. --- scale height. --- snapover. --- thermosphere. --- view factor. --- Design and construction. --- Disseny i construcció --- Compton effect. --- Debye length. --- Earth shielding. --- activation energy. --- alpha radiation. --- burnout. --- coronal mass ejection. --- displacement damage. --- electrical ground. --- galactic cosmic ray. --- gravitational focusing. --- hydrazine. --- ideal gas law. --- impact cratering. --- latchup. --- launch facility. --- magnetopause. --- magnetosphere. --- mass density. --- nuclear weapons. --- obscuration. --- outgassing. --- pair production. --- reaction efficiency (RE). --- residence time. --- scale height. --- snapover. --- thermosphere. --- view factor.
Choose an application
The breakup of the Space Shuttle Columbia as it reentered Earth's atmosphere on February 1, 2003, reminded the public--and NASA--of the grave risks posed to spacecraft by everything from insulating foam to space debris. Here, Alan Tribble presents a singular, up-to-date account of a wide range of less conspicuous but no less consequential environmental effects that can damage or cause poor performance of orbiting spacecraft. Conveying a wealth of insight into the nature of the space environment and how spacecraft interact with it, he covers design modifications aimed at eliminating or reducing such environmental effects as solar absorptance increases caused by self-contamination, materials erosion by atomic oxygen, electrical discharges due to spacecraft charging, degradation of electrical circuits by radiation, and bombardment by micrometeorites. This book is unique in that it bridges the gap between studies of the space environment as performed by space physicists and spacecraft design engineering as practiced by aerospace engineers.
Space vehicles --- Space environment. --- Environment, Space --- Extraterrestrial environment --- Space weather --- Extreme environments --- Design and construction. --- Compton effect. --- Debye length. --- Earth shielding. --- activation energy. --- alpha radiation. --- burnout. --- coronal mass ejection. --- displacement damage. --- electrical ground. --- galactic cosmic ray. --- gravitational focusing. --- hydrazine. --- ideal gas law. --- impact cratering. --- latchup. --- launch facility. --- magnetopause. --- magnetosphere. --- mass density. --- nuclear weapons. --- obscuration. --- outgassing. --- pair production. --- reaction efficiency (RE). --- residence time. --- scale height. --- snapover. --- thermosphere. --- view factor.
Choose an application
The breakup of the Space Shuttle Columbia as it reentered Earth's atmosphere on February 1, 2003, reminded the public--and NASA--of the grave risks posed to spacecraft by everything from insulating foam to space debris. Here, Alan Tribble presents a singular, up-to-date account of a wide range of less conspicuous but no less consequential environmental effects that can damage or cause poor performance of orbiting spacecraft. Conveying a wealth of insight into the nature of the space environment and how spacecraft interact with it, he covers design modifications aimed at eliminating or reducing such environmental effects as solar absorptance increases caused by self-contamination, materials erosion by atomic oxygen, electrical discharges due to spacecraft charging, degradation of electrical circuits by radiation, and bombardment by micrometeorites. This book is unique in that it bridges the gap between studies of the space environment as performed by space physicists and spacecraft design engineering as practiced by aerospace engineers.
Pure sciences. Natural sciences (general) --- Space vehicles --- Space environment. --- Medi ambient espacial --- Vehicles espacials --- Compton effect. --- Debye length. --- Earth shielding. --- activation energy. --- alpha radiation. --- burnout. --- coronal mass ejection. --- displacement damage. --- electrical ground. --- galactic cosmic ray. --- gravitational focusing. --- hydrazine. --- ideal gas law. --- impact cratering. --- latchup. --- launch facility. --- magnetopause. --- magnetosphere. --- mass density. --- nuclear weapons. --- obscuration. --- outgassing. --- pair production. --- reaction efficiency (RE). --- residence time. --- scale height. --- snapover. --- thermosphere. --- view factor. --- Design and construction. --- Disseny i construcció
Choose an application
This book contains seven reviews and four research articles on the various modern approaches to the problem of quark confinement in quantum chromodynamics (QCD). These approaches include microscopic models of the Yang–Mills vacuum, which are based on the condensation of magnetic monopoles and center vortices, as well as the models of the confining quark-antiquark string. Possible applications of these models to the analysis of the novel superinsulating state, which emerges in such condensed-matter systems as Josephson junction arrays, are further discussed in one of the reviews. Two reviews from this collection discuss the approaches towards the analytic construction of effective confining theories, at the classical level and within the center-vortex model of the Yang–Mills vacuum. Other aspects of non-perturbative physics addressed by this collection include a possible connection between the localization of low-lying Dirac eigenmodes with the deconfinement and the chiral QCD phase transitions, as well as the role of topology in baryon-rich matter. Last but not least, a novel model of dark matter, based on ultralight axion particles, whose masses are arising due to distinct SU(2) Yang–Mills scales and the Planck mass, is suggested and developed in one of the contributed articles.
Research & information: general --- quantum chromodynamics --- confinement --- center vortex model --- vacuum structure --- cooling --- Lattice Gauge Theories --- Effective String Theories --- localization --- QCD --- lattice gauge theory --- finite temperature --- galaxy rotation curves --- low surface brightness --- dark matter --- dark energy --- ultralight axion particles --- cores --- halos --- mass-density --- profiles --- pure Yang–Mills theory --- monopoles --- topological interactions --- ensembles and effective fields --- topological solitons --- higher order theories --- gauge theory --- effective field theory --- magnetic flux symmetry --- chiral symmetry --- monopole --- lattice QCD --- spontaneous symmetry breaking --- Abelian projection --- magnetic catalysis --- magnetic disorder --- confinement models --- center vortices --- magnetic monopoles --- quark condensate --- topology --- lattice field theory --- dense matter --- phase transitions --- n/a --- pure Yang-Mills theory
Choose an application
This book contains seven reviews and four research articles on the various modern approaches to the problem of quark confinement in quantum chromodynamics (QCD). These approaches include microscopic models of the Yang–Mills vacuum, which are based on the condensation of magnetic monopoles and center vortices, as well as the models of the confining quark-antiquark string. Possible applications of these models to the analysis of the novel superinsulating state, which emerges in such condensed-matter systems as Josephson junction arrays, are further discussed in one of the reviews. Two reviews from this collection discuss the approaches towards the analytic construction of effective confining theories, at the classical level and within the center-vortex model of the Yang–Mills vacuum. Other aspects of non-perturbative physics addressed by this collection include a possible connection between the localization of low-lying Dirac eigenmodes with the deconfinement and the chiral QCD phase transitions, as well as the role of topology in baryon-rich matter. Last but not least, a novel model of dark matter, based on ultralight axion particles, whose masses are arising due to distinct SU(2) Yang–Mills scales and the Planck mass, is suggested and developed in one of the contributed articles.
quantum chromodynamics --- confinement --- center vortex model --- vacuum structure --- cooling --- Lattice Gauge Theories --- Effective String Theories --- localization --- QCD --- lattice gauge theory --- finite temperature --- galaxy rotation curves --- low surface brightness --- dark matter --- dark energy --- ultralight axion particles --- cores --- halos --- mass-density --- profiles --- pure Yang–Mills theory --- monopoles --- topological interactions --- ensembles and effective fields --- topological solitons --- higher order theories --- gauge theory --- effective field theory --- magnetic flux symmetry --- chiral symmetry --- monopole --- lattice QCD --- spontaneous symmetry breaking --- Abelian projection --- magnetic catalysis --- magnetic disorder --- confinement models --- center vortices --- magnetic monopoles --- quark condensate --- topology --- lattice field theory --- dense matter --- phase transitions --- n/a --- pure Yang-Mills theory
Choose an application
This book contains seven reviews and four research articles on the various modern approaches to the problem of quark confinement in quantum chromodynamics (QCD). These approaches include microscopic models of the Yang–Mills vacuum, which are based on the condensation of magnetic monopoles and center vortices, as well as the models of the confining quark-antiquark string. Possible applications of these models to the analysis of the novel superinsulating state, which emerges in such condensed-matter systems as Josephson junction arrays, are further discussed in one of the reviews. Two reviews from this collection discuss the approaches towards the analytic construction of effective confining theories, at the classical level and within the center-vortex model of the Yang–Mills vacuum. Other aspects of non-perturbative physics addressed by this collection include a possible connection between the localization of low-lying Dirac eigenmodes with the deconfinement and the chiral QCD phase transitions, as well as the role of topology in baryon-rich matter. Last but not least, a novel model of dark matter, based on ultralight axion particles, whose masses are arising due to distinct SU(2) Yang–Mills scales and the Planck mass, is suggested and developed in one of the contributed articles.
Research & information: general --- quantum chromodynamics --- confinement --- center vortex model --- vacuum structure --- cooling --- Lattice Gauge Theories --- Effective String Theories --- localization --- QCD --- lattice gauge theory --- finite temperature --- galaxy rotation curves --- low surface brightness --- dark matter --- dark energy --- ultralight axion particles --- cores --- halos --- mass-density --- profiles --- pure Yang-Mills theory --- monopoles --- topological interactions --- ensembles and effective fields --- topological solitons --- higher order theories --- gauge theory --- effective field theory --- magnetic flux symmetry --- chiral symmetry --- monopole --- lattice QCD --- spontaneous symmetry breaking --- Abelian projection --- magnetic catalysis --- magnetic disorder --- confinement models --- center vortices --- magnetic monopoles --- quark condensate --- topology --- lattice field theory --- dense matter --- phase transitions
Listing 1 - 6 of 6 |
Sort by
|