Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULiège (7)

VIVES (7)

Vlaams Parlement (7)

More...

Resource type

book (15)


Language

English (15)


Year
From To Submit

2022 (2)

2021 (9)

2020 (3)

2019 (1)

Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Book
Molecular Marker Technology for Crop Improvement
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.

Keywords

Research & information: general --- Biology, life sciences --- durum wheat --- landraces --- marker-trait association --- root system architecture --- sugarcane --- parental line --- population structure --- plant breeding --- genetic diversity --- simple sequence repeats (SSR) --- Persea americana --- SMRT sequencing --- simple sequence repeat --- genetic relationship --- flavonoid biosynthesis --- fruit coloration --- marker-assisted selection --- microsatellites --- Rubus --- gene prioritization --- linkage disequilibrium --- tropical maize --- brown rice recovery --- milled rice recovery --- head rice recovery --- milling yield traits --- QTL mapping --- rice (Oryza sativa L.) --- tetraploid potato --- SNP markers --- SLAF-seq technology --- high-density genetic linkage map --- genome wide association study --- GWAS water use --- agronomic traits --- MTAs --- candidate genes --- TKW --- sedimentation volume --- SDS --- YR --- drought stress --- association mapping --- QTL hotspot --- seminal root --- gene pyramiding --- aroma --- QTL --- chromosome --- selection --- introgression line --- maize (Zea mays L.) --- Striga resistance/tolerance --- F2:3 biparental mapping --- Marker-assisted selection --- persimmon --- sex determination --- fruit astringency --- molecular markers --- genomics --- genomic selection --- genomic prediction --- whole genome regression --- grain quality --- near infra-red spectroscopy --- cereal crop --- sorghum --- multi-trait --- Triticum aestivum --- mapping population --- leaf rust --- stem rust --- pathogen races --- disease resistance --- apricot --- MAS --- breeding --- MATH --- PPV resistance --- agarose --- ParPMC --- ParPMC2-del --- high resolution melting --- ISBP markers --- drought --- MQTL --- wheat variability --- crop breeding --- genetic maps --- GWAS --- marker assisted selection --- DNA sequencing --- durum wheat --- landraces --- marker-trait association --- root system architecture --- sugarcane --- parental line --- population structure --- plant breeding --- genetic diversity --- simple sequence repeats (SSR) --- Persea americana --- SMRT sequencing --- simple sequence repeat --- genetic relationship --- flavonoid biosynthesis --- fruit coloration --- marker-assisted selection --- microsatellites --- Rubus --- gene prioritization --- linkage disequilibrium --- tropical maize --- brown rice recovery --- milled rice recovery --- head rice recovery --- milling yield traits --- QTL mapping --- rice (Oryza sativa L.) --- tetraploid potato --- SNP markers --- SLAF-seq technology --- high-density genetic linkage map --- genome wide association study --- GWAS water use --- agronomic traits --- MTAs --- candidate genes --- TKW --- sedimentation volume --- SDS --- YR --- drought stress --- association mapping --- QTL hotspot --- seminal root --- gene pyramiding --- aroma --- QTL --- chromosome --- selection --- introgression line --- maize (Zea mays L.) --- Striga resistance/tolerance --- F2:3 biparental mapping --- Marker-assisted selection --- persimmon --- sex determination --- fruit astringency --- molecular markers --- genomics --- genomic selection --- genomic prediction --- whole genome regression --- grain quality --- near infra-red spectroscopy --- cereal crop --- sorghum --- multi-trait --- Triticum aestivum --- mapping population --- leaf rust --- stem rust --- pathogen races --- disease resistance --- apricot --- MAS --- breeding --- MATH --- PPV resistance --- agarose --- ParPMC --- ParPMC2-del --- high resolution melting --- ISBP markers --- drought --- MQTL --- wheat variability --- crop breeding --- genetic maps --- GWAS --- marker assisted selection --- DNA sequencing


Book
Molecular Marker Technology for Crop Improvement
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.

Keywords

durum wheat --- landraces --- marker-trait association --- root system architecture --- sugarcane --- parental line --- population structure --- plant breeding --- genetic diversity --- simple sequence repeats (SSR) --- Persea americana --- SMRT sequencing --- simple sequence repeat --- genetic relationship --- flavonoid biosynthesis --- fruit coloration --- marker-assisted selection --- microsatellites --- Rubus --- gene prioritization --- linkage disequilibrium --- tropical maize --- brown rice recovery --- milled rice recovery --- head rice recovery --- milling yield traits --- QTL mapping --- rice (Oryza sativa L.) --- tetraploid potato --- SNP markers --- SLAF-seq technology --- high-density genetic linkage map --- genome wide association study --- GWAS water use --- agronomic traits --- MTAs --- candidate genes --- TKW --- sedimentation volume --- SDS --- YR --- drought stress --- association mapping --- QTL hotspot --- seminal root --- gene pyramiding --- aroma --- QTL --- chromosome --- selection --- introgression line --- maize (Zea mays L.) --- Striga resistance/tolerance --- F2:3 biparental mapping --- Marker-assisted selection --- persimmon --- sex determination --- fruit astringency --- molecular markers --- genomics --- genomic selection --- genomic prediction --- whole genome regression --- grain quality --- near infra-red spectroscopy --- cereal crop --- sorghum --- multi-trait --- Triticum aestivum --- mapping population --- leaf rust --- stem rust --- pathogen races --- disease resistance --- apricot --- MAS --- breeding --- MATH --- PPV resistance --- agarose --- ParPMC --- ParPMC2-del --- high resolution melting --- ISBP markers --- drought --- MQTL --- wheat variability --- crop breeding --- genetic maps --- GWAS --- marker assisted selection --- DNA sequencing


Book
Advances in Cereal Crops Breeding
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on ‘Advances in Cereal Crops Breeding’ comprises 10 papers covering a wide range of subjects, including the expression-level investigation of genes in terms of salinity stress adaptations and their relationships with proteomics in rice, the use of genetic analysis to assess the general combining ability (GCA) and specific combining ability (SCA) in promising hybrids of maize, the use of DNA markers based on PCR in rice, the identification of quantitative trait loci (QTLs) in wheat and simple sequence repeats (SSR) in rice, the use of single-nucleotide polymorphisms (SNP) in a genome-wide association study (GWAS) in cereals, and Nanopore direct RNA sequencing of related with LTR RNA retrotransposon in triticale prior to the genomic selection of heterotic maize hybrids.


Book
Advances in Cereal Crops Breeding
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on ‘Advances in Cereal Crops Breeding’ comprises 10 papers covering a wide range of subjects, including the expression-level investigation of genes in terms of salinity stress adaptations and their relationships with proteomics in rice, the use of genetic analysis to assess the general combining ability (GCA) and specific combining ability (SCA) in promising hybrids of maize, the use of DNA markers based on PCR in rice, the identification of quantitative trait loci (QTLs) in wheat and simple sequence repeats (SSR) in rice, the use of single-nucleotide polymorphisms (SNP) in a genome-wide association study (GWAS) in cereals, and Nanopore direct RNA sequencing of related with LTR RNA retrotransposon in triticale prior to the genomic selection of heterotic maize hybrids.


Book
Advances in Cereal Crops Breeding
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on ‘Advances in Cereal Crops Breeding’ comprises 10 papers covering a wide range of subjects, including the expression-level investigation of genes in terms of salinity stress adaptations and their relationships with proteomics in rice, the use of genetic analysis to assess the general combining ability (GCA) and specific combining ability (SCA) in promising hybrids of maize, the use of DNA markers based on PCR in rice, the identification of quantitative trait loci (QTLs) in wheat and simple sequence repeats (SSR) in rice, the use of single-nucleotide polymorphisms (SNP) in a genome-wide association study (GWAS) in cereals, and Nanopore direct RNA sequencing of related with LTR RNA retrotransposon in triticale prior to the genomic selection of heterotic maize hybrids.

Keywords

Research & information: general --- maize --- density tolerance --- combining ability --- gene effects --- genetic diversity --- rice --- salinity --- submergence tolerance --- blast --- SSR markers --- PCR analysis --- long non-coding RNAs --- seed development --- Nanopore sequencing --- retrotransposons --- triticale --- prediction accuracy --- mixed linear and Bayesian models --- machine learning algorithms --- training set size and composition --- parametric and nonparametric models --- drought stress --- dendrogram --- barley --- breeding --- marker-assisted selection --- genes --- genetic resources --- genome editing --- health benefits --- metabolomics --- oat --- QTL --- wheat --- Triticum aestivum L. --- QMrl-7B --- root traits --- grain yield --- nitrogen use efficiency --- GWAS --- salinity tolerance --- Vietnamese landraces --- abiotic stress --- root --- auxin --- YUCCA --- PIN --- proteomics --- mass spectrometry --- maize --- density tolerance --- combining ability --- gene effects --- genetic diversity --- rice --- salinity --- submergence tolerance --- blast --- SSR markers --- PCR analysis --- long non-coding RNAs --- seed development --- Nanopore sequencing --- retrotransposons --- triticale --- prediction accuracy --- mixed linear and Bayesian models --- machine learning algorithms --- training set size and composition --- parametric and nonparametric models --- drought stress --- dendrogram --- barley --- breeding --- marker-assisted selection --- genes --- genetic resources --- genome editing --- health benefits --- metabolomics --- oat --- QTL --- wheat --- Triticum aestivum L. --- QMrl-7B --- root traits --- grain yield --- nitrogen use efficiency --- GWAS --- salinity tolerance --- Vietnamese landraces --- abiotic stress --- root --- auxin --- YUCCA --- PIN --- proteomics --- mass spectrometry


Book
Recent Advances in Genetics and Breeding of Major Staple Food Crops
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

To meet the global food demand of an increasing population, food production has to be increased by 60% by 2050. The main production constraints, such as climate change, biotic stresses, abiotic stresses, soil nutrition deficiency problems, problematic soils, etc., have to be addressed on an urgent basis. More than 50% of human calories are from three major cereals: rice, wheat, and maize. The harnessing of genetic diversity by novel allele mining assisted by recent advances in biotechnological and bioinformatics tools will enhance the utilization of the hidden treasures in the gene bank. Technological advances in plant breeding will provide some solutions for the biofortification, stress resistance, yield potential, and quality improvement in staple crops. The elucidation of the genetic, physiological, and molecular basis of useful traits and the improvement of the improved donors containing multiple traits are key activities for variety development. High-throughput genotyping systems assisted by bioinformatics and data science provide efficient and easy tools for geneticists and breeders. Recently, new breeding techniques applied in some food crops have become game-changers in the global food crop market. With this background, we invited 18 eminent researchers working on food crops from across the world to contribute their high-quality original research manuscripts. The research studies covered modern food crop genetics and breeding.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- dry direct-seeded rice --- early vigor --- QTL --- candidate gene --- phenotyping --- EMS --- MutMap --- mutagenesis --- CLE7 --- tropical maize --- fasciation --- mapping --- radish --- microspore culture --- regeneration rate --- outcrossing --- two-way pseudo-testcross model --- Oryza sativa L. --- PPDK --- flo4-5 --- floury endosperm --- rice --- allelopathy --- yield --- HYV --- Tongil --- indica --- japonica --- SNP --- molecular breeding --- wheat quality --- wheat milling --- wheat hardness --- puroindolines --- water absorption capacity --- crop genetics --- Solanum tuberosum --- abiotic stress --- phenylpropanoids --- essential amino acid --- transcriptome --- small RNA --- comparative genomics --- nutrition --- days to heading --- Hd1 --- Ghd7 --- Hd16 --- chromosome segment substitution lines (CSSLs) --- quantitative trait locus (QTL) --- marker-assisted selection (MAS) --- cold tolerance (CT) --- gene editing --- genetically modified --- genetically modified organism (GMO) --- crop breeding --- ribonucleoprotein complex (RNP) --- genetic screening --- landraces --- genetic diversity --- population structure --- West Africa --- maize improvement --- DArTseq markers --- co-expression network --- drought-tolerant-yield --- reproductive-stage drought --- qDTYs --- transcriptomics --- watermelon --- pentatricopeptide-repeat (PPR) gene family --- comprehensive analysis --- expression profiling --- flesh color --- canola --- Brassica napus --- genetics --- gene technology --- genomics --- disease resistance --- CSSLs --- drought stress --- ‘KDML105’ rice --- low-temperature germinability --- interspecific cross --- interaction --- peanut --- core collection --- genome-wide association study --- linkage disequilibrium --- dry direct-seeded rice --- early vigor --- QTL --- candidate gene --- phenotyping --- EMS --- MutMap --- mutagenesis --- CLE7 --- tropical maize --- fasciation --- mapping --- radish --- microspore culture --- regeneration rate --- outcrossing --- two-way pseudo-testcross model --- Oryza sativa L. --- PPDK --- flo4-5 --- floury endosperm --- rice --- allelopathy --- yield --- HYV --- Tongil --- indica --- japonica --- SNP --- molecular breeding --- wheat quality --- wheat milling --- wheat hardness --- puroindolines --- water absorption capacity --- crop genetics --- Solanum tuberosum --- abiotic stress --- phenylpropanoids --- essential amino acid --- transcriptome --- small RNA --- comparative genomics --- nutrition --- days to heading --- Hd1 --- Ghd7 --- Hd16 --- chromosome segment substitution lines (CSSLs) --- quantitative trait locus (QTL) --- marker-assisted selection (MAS) --- cold tolerance (CT) --- gene editing --- genetically modified --- genetically modified organism (GMO) --- crop breeding --- ribonucleoprotein complex (RNP) --- genetic screening --- landraces --- genetic diversity --- population structure --- West Africa --- maize improvement --- DArTseq markers --- co-expression network --- drought-tolerant-yield --- reproductive-stage drought --- qDTYs --- transcriptomics --- watermelon --- pentatricopeptide-repeat (PPR) gene family --- comprehensive analysis --- expression profiling --- flesh color --- canola --- Brassica napus --- genetics --- gene technology --- genomics --- disease resistance --- CSSLs --- drought stress --- ‘KDML105’ rice --- low-temperature germinability --- interspecific cross --- interaction --- peanut --- core collection --- genome-wide association study --- linkage disequilibrium


Book
Genetics and Improvement of Forest Trees
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Forest tree improvement has mainly been implemented to enhance the productivity of artificial forests. However, given the drastically changing global environment, improvement of various traits related to environmental adaptability is more essential than ever. This book focuses on genetic information, including trait heritability and the physiological mechanisms thereof, which facilitate tree improvement. Nineteen papers are included, reporting genetic approaches to improving various species, including conifers, broad-leaf trees, and bamboo. All of the papers in this book provide cutting-edge genetic information on tree genetics and suggest research directions for future tree improvement.

Keywords

Research & information: general --- early selection --- stomatal characteristics --- water stress --- water relations --- specific leaf area --- Eucalyptus clones --- LTR-retrotransposon --- Ty3-gypsy --- Ty1-copia --- IRAP --- molecular markers --- bamboo --- Phyllostachys --- genetic diversity --- populations structure --- AMOVA --- central-marginal hypothesis --- cline --- Pinaceae --- trailing edge population --- Sakhalin fir --- sub-boreal forest --- gibberellin --- male strobilus induction --- transcriptome --- conifer --- Cryptomeria japonica --- linkage map --- male sterility --- marker-assisted selection --- C. fortunei --- differentially expressed genes --- phenylpropanoid metabolism --- candidate genes --- Camellia oleifera --- leaf senescence --- transcriptome analysis --- senescence-associated genes --- physiological characterization --- cpDNA --- next generation sequencing --- northern limit --- nucleotide diversity --- phylogeny --- In/Del --- SNP --- SSR --- Chinese fir --- heartwood --- secondary metabolites --- widely targeted metabolomics --- flavonoids --- amplicon sequencing --- AmpliSeq --- genomic selection --- Japanese cedar (Cryptomeria japonica) --- multiplexed SNP genotyping --- spatial autocorrelation error --- pine wood disease --- resistance to pine wood nematode --- inoculation test --- multisite --- cumulative temperature --- Pinus thunbergii --- Thujopsis dolabrata --- EST-SSR markers --- varieties --- population structure --- pine wilt disease --- Bursaphelenchus xylophilus --- genotype by environment interaction --- Japanese black pine --- variance component --- local adaptation --- silviculture --- seed zone --- tree improvement program --- breeding --- genotype × environment interaction --- mast seeding --- seed production --- thinning --- forest tree breeding --- high-throughput phenotyping --- epigenetics --- genotyping --- genomic prediction models --- quantitative trait locus --- breeding cycle --- Cryptomeria japonica var. sinensis --- demographic history --- RAD-seq --- ancient tree --- conservation --- infrared thermography --- chlorophyll fluorescence --- cumulative drought stress --- genetic conservation --- genetic management --- pine wood nematode --- pine wood nematode-Pinus thunbergii resistant trees --- early selection --- stomatal characteristics --- water stress --- water relations --- specific leaf area --- Eucalyptus clones --- LTR-retrotransposon --- Ty3-gypsy --- Ty1-copia --- IRAP --- molecular markers --- bamboo --- Phyllostachys --- genetic diversity --- populations structure --- AMOVA --- central-marginal hypothesis --- cline --- Pinaceae --- trailing edge population --- Sakhalin fir --- sub-boreal forest --- gibberellin --- male strobilus induction --- transcriptome --- conifer --- Cryptomeria japonica --- linkage map --- male sterility --- marker-assisted selection --- C. fortunei --- differentially expressed genes --- phenylpropanoid metabolism --- candidate genes --- Camellia oleifera --- leaf senescence --- transcriptome analysis --- senescence-associated genes --- physiological characterization --- cpDNA --- next generation sequencing --- northern limit --- nucleotide diversity --- phylogeny --- In/Del --- SNP --- SSR --- Chinese fir --- heartwood --- secondary metabolites --- widely targeted metabolomics --- flavonoids --- amplicon sequencing --- AmpliSeq --- genomic selection --- Japanese cedar (Cryptomeria japonica) --- multiplexed SNP genotyping --- spatial autocorrelation error --- pine wood disease --- resistance to pine wood nematode --- inoculation test --- multisite --- cumulative temperature --- Pinus thunbergii --- Thujopsis dolabrata --- EST-SSR markers --- varieties --- population structure --- pine wilt disease --- Bursaphelenchus xylophilus --- genotype by environment interaction --- Japanese black pine --- variance component --- local adaptation --- silviculture --- seed zone --- tree improvement program --- breeding --- genotype × environment interaction --- mast seeding --- seed production --- thinning --- forest tree breeding --- high-throughput phenotyping --- epigenetics --- genotyping --- genomic prediction models --- quantitative trait locus --- breeding cycle --- Cryptomeria japonica var. sinensis --- demographic history --- RAD-seq --- ancient tree --- conservation --- infrared thermography --- chlorophyll fluorescence --- cumulative drought stress --- genetic conservation --- genetic management --- pine wood nematode --- pine wood nematode-Pinus thunbergii resistant trees


Book
Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Overall, the 19 contributions in this Special Issue “Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions” discuss the various aspects of salt stress responses in plants. It also discusses various mechanisms and approaches to conferring salt tolerance on plants. These types of research studies provide further directions in the development of crop plants for the saline environment in the era of climate change.

Keywords

Research & information: general --- Biology, life sciences --- CPA gene family --- RsNHX1 --- over-expression --- virus-induced gene silence --- salt resistance --- radish --- 14-3-3 gene family --- Triticum aestivum L. --- bioinformatics analysis --- salt tolerance --- protein-protein interactions --- Populus simonii × P. nigra --- PsnNAC036 --- transcription factor --- salt stress --- HT tolerance --- ion transport --- osmotic homeostasis --- hormone mediation --- cell wall regulation --- salt adaptation --- proteomics --- microtubules --- tubulin --- phenolic metabolites --- lemon balm --- chlorophyll fluorescence --- medicinal plants --- secondary metabolites --- abiotic elicitors --- salinity --- betaine aldehyde dehydrogenase 1 (BADH1) --- domestication --- cultivated rice --- wild rice --- Hordeum vulgare L. --- RNA-seq analysis --- differentially expressed genes --- tolerance --- candidate genes --- C3-CAM intermediate --- common ice plant --- Mesembryanthemum crystallinum --- osmotic stress --- abiotic stress --- antioxidant defense --- climate change --- hydrogen peroxide --- lipid peroxidation --- oxidative stress --- phytohormones --- stress signaling --- mulberry --- TMT proteomics --- phenylpropanoid metabolism --- apoplast --- functional screening --- Hordeum vulgare --- seedling --- halophyte species --- NADPH oxidases --- NOX --- respiratory burst oxidase homolog RBOH gene expression --- saline adaptations --- C2H2 zinc finger protein --- heterologous expression --- Millettia pinnata --- thaumatin-like proteins (TLPs) --- bolTLP1 --- broccoli --- drought stress --- antioxidants --- carbohydrates --- carotenoids --- xanthophyll cycle --- osmoprotectants --- ROS-scavengers --- α-/γ-tocopherols --- quantitative trait locus (QTL) --- association analysis --- marker-assisted selection (MAS) --- rice (Oryza sativa L.) --- hydroxyindole-O-methyltransferase gene --- melatonin --- ROS --- ABA --- ion homeostasis --- amino acids --- Malus domestica --- calcium --- calcineurin B-like proteins --- Na+ accumulation --- CPA gene family --- RsNHX1 --- over-expression --- virus-induced gene silence --- salt resistance --- radish --- 14-3-3 gene family --- Triticum aestivum L. --- bioinformatics analysis --- salt tolerance --- protein-protein interactions --- Populus simonii × P. nigra --- PsnNAC036 --- transcription factor --- salt stress --- HT tolerance --- ion transport --- osmotic homeostasis --- hormone mediation --- cell wall regulation --- salt adaptation --- proteomics --- microtubules --- tubulin --- phenolic metabolites --- lemon balm --- chlorophyll fluorescence --- medicinal plants --- secondary metabolites --- abiotic elicitors --- salinity --- betaine aldehyde dehydrogenase 1 (BADH1) --- domestication --- cultivated rice --- wild rice --- Hordeum vulgare L. --- RNA-seq analysis --- differentially expressed genes --- tolerance --- candidate genes --- C3-CAM intermediate --- common ice plant --- Mesembryanthemum crystallinum --- osmotic stress --- abiotic stress --- antioxidant defense --- climate change --- hydrogen peroxide --- lipid peroxidation --- oxidative stress --- phytohormones --- stress signaling --- mulberry --- TMT proteomics --- phenylpropanoid metabolism --- apoplast --- functional screening --- Hordeum vulgare --- seedling --- halophyte species --- NADPH oxidases --- NOX --- respiratory burst oxidase homolog RBOH gene expression --- saline adaptations --- C2H2 zinc finger protein --- heterologous expression --- Millettia pinnata --- thaumatin-like proteins (TLPs) --- bolTLP1 --- broccoli --- drought stress --- antioxidants --- carbohydrates --- carotenoids --- xanthophyll cycle --- osmoprotectants --- ROS-scavengers --- α-/γ-tocopherols --- quantitative trait locus (QTL) --- association analysis --- marker-assisted selection (MAS) --- rice (Oryza sativa L.) --- hydroxyindole-O-methyltransferase gene --- melatonin --- ROS --- ABA --- ion homeostasis --- amino acids --- Malus domestica --- calcium --- calcineurin B-like proteins --- Na+ accumulation


Book
Molecular Advances in Wheat and Barley
Author:
ISBN: 3039213725 3039213717 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Allohexaploid bread wheat and diploid barley are two of the most cultivated crops in the world. This book reports novel research and reviews concerning the use of modern technologies to understand the molecular bases for wheat and barley improvement. The contributions published in this book illustrate research advances in wheat and barley knowledge using modern molecular techniques. These molecular approaches cover genomic, transcriptomic, proteomic, and phenomic levels, together with new tools for gene identification and the development of novel molecular markers. Overall, the contributions for this book lead to a further understanding of regulatory systems in order to improve wheat and barley performance.

Keywords

n/a --- biotechnology --- transgene --- Aegilops tauschii --- antioxidant enzymes --- aquaporin --- molecular marker --- Kompetitive Allele Specific PCR (KASP) --- transgenic wheat --- purple acid phosphatase phytase --- genome editing --- genes --- resistance --- genome assembly --- germination --- protein two-dimensional electrophoresis --- 1 --- disease resistance --- Thinopyrum --- plant --- oligo probe --- optical mapping --- genetic biofortification --- breeding --- population structure --- marker-assisted selection --- crops --- hybrid necrosis --- PAPhy --- Triticeae --- wheat --- Barley --- genome stability --- CRISPR --- powdery mildew --- RNA editing --- bread wheat --- allohexaploid --- nucleus --- chromatin --- introgression --- favorable alleles --- genetic engineering --- Tunisian landraces --- barely --- Pm40 --- Blumeria graminis f. sp. tritici --- Transcriptional dynamics --- Lr42 --- Triticum durum --- histochemical analysis --- molecular mapping --- ribosomal DNA --- 12-oxophytodienoate reductase --- small segment translocation --- HIGS --- Powdery mildew --- abiotic stress --- phytase --- RNA-seq --- Bulked segregant analysis-RNA-Seq (BSR-Seq) --- grain --- DArTseq technology --- center of diversity --- mature grain phytase activity (MGPA) --- cereals --- Grain development --- hybrid --- homoeolog --- 3D-FISH --- jasmonates --- Single nucleotide polymorphism (SNP) --- genetic diversity --- ND-FISH --- durum wheat --- protease --- transpiration --- TdPIP2 --- cereal cyst nematodes --- mass spectrometry --- 6R --- Landrace --- marker-trait associations --- BAC --- chromosome --- barley --- freezing tolerance --- KASP markers --- Triticum aestivum --- rye


Book
Molecular Research in Rice : Agronomically Important Traits
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world’s population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To achieve improved agricultural performance in rice, while overcoming the challenges presented by climate change, it is essential to understand the molecular basis of agronomically important traits. Recently developed techniques in molecular biology, especially in genomics and other related omics fields, can reveal the complex molecular mechanisms involved in the control of agronomic traits. As rice was the first crop genome to be sequenced, in 2004, molecular research tools for rice are well-established, and further molecular studies will enable the development of novel rice cultivars with superior agronomic performance.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- chloroplast RNA splicing and ribosome maturation (CRM) domain --- intron splicing --- chloroplast development --- rice --- rice (Oryza sativa L.), grain size and weight --- Insertion/Deletion (InDel) markers --- multi-gene allele contributions --- genetic variation --- rice germplasm --- disease resistance --- microbe-associated molecular pattern (MAMP) --- Pyricularia oryzae (formerly Magnaporthe oryzae) --- Oryza sativa (rice) --- receptor-like cytoplasmic kinase (RLCK) --- reactive oxygen species (ROS) --- salinity --- osmotic stress --- combined stress --- GABA --- phenolic metabolism --- CIPKs genes --- shoot apical meristem --- transcriptomic analysis --- co-expression network --- tiller --- nitrogen rate --- rice (Oryza sativa L.) --- quantitative trait locus --- grain protein content --- single nucleotide polymorphism --- residual heterozygote --- rice (Oryza sativa) --- specific length amplified fragment sequencing --- Kjeldahl nitrogen determination --- near infrared reflectance spectroscopy --- heterosis --- yield components --- high-throughput sequence --- FW2.2-like gene --- tiller number --- grain yield --- CRISPR/Cas9 --- genome editing --- off-target effect --- heat stress --- transcriptome --- anther --- anthesis --- pyramiding --- bacterial blight --- marker-assisted selection --- foreground selection --- background selection --- japonica rice --- cold stress --- germinability --- high-density linkage map --- QTLs --- seed dormancy --- ABA --- seed germination --- chromosome segment substitution lines --- linkage mapping --- Oryza sativa L. --- chilling stress --- chlorophyll biosynthesis --- chloroplast biogenesis --- epidermal characteristics --- AAA-ATPase --- salicylic acid --- fatty acid --- Magnaporthe oryzae --- leaf senescence --- quantitative trait loci --- transcriptome analysis --- genetic --- epigenetic --- global methylation --- transgenic --- phenotype --- OsNAR2.1 --- dwarfism --- OsCYP96B4 --- metabolomics --- NMR --- qRT-PCR --- bHLH transcription factor --- lamina joint --- leaf angle --- long grain --- brassinosteroid signaling --- blast disease --- partial resistance --- pi21 --- haplotype --- high night temperature --- wet season --- dry season --- n/a

Listing 1 - 10 of 15 << page
of 2
>>
Sort by