Listing 1 - 10 of 151 | << page >> |
Sort by
|
Choose an application
Algebraic topology --- Surfaces --- Topology --- 515.162 --- Curved surfaces --- Geometry --- Shapes --- Low-dimensional manifold topology. Topological surfaces. Topological 3-manifolds, 4-manifolds. Knots. Links. Braids --- 515.162 Low-dimensional manifold topology. Topological surfaces. Topological 3-manifolds, 4-manifolds. Knots. Links. Braids
Choose an application
The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
warped products --- vector equilibrium problem --- Laplace operator --- cost functional --- pointwise 1-type spherical Gauss map --- inequalities --- homogeneous manifold --- finite-type --- magnetic curves --- Sasaki-Einstein --- evolution dynamics --- non-flat complex space forms --- hyperbolic space --- compact Riemannian manifolds --- maximum principle --- submanifold integral --- Clifford torus --- D’Atri space --- 3-Sasakian manifold --- links --- isoparametric hypersurface --- Einstein manifold --- real hypersurfaces --- Kähler 2 --- *-Weyl curvature tensor --- homogeneous geodesic --- optimal control --- formality --- hadamard manifolds --- Sasakian Lorentzian manifold --- generalized convexity --- isospectral manifolds --- Legendre curves --- geodesic chord property --- spherical Gauss map --- pointwise bi-slant immersions --- mean curvature --- weakly efficient pareto points --- geodesic symmetries --- homogeneous Finsler space --- orbifolds --- slant curves --- hypersphere --- ??-space --- k-D’Atri space --- *-Ricci tensor --- homogeneous space
Choose an application
Since its introduction by Friedhelm Waldhausen in the 1970's, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing Waldhausen's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a "desingularization," improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.
Piecewise linear topology. --- Mappings (Mathematics) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Transformations (Mathematics) --- PL topology --- Manifolds (Mathematics) --- CAT Whitehead space. --- CAT manifold. --- Euclidean neighborhood retract. --- Euclidean polyhedra. --- PL Serre fibration. --- PL Whitehead space. --- PL homeomorphism. --- PL manifold. --- Quillen's Theorem A. --- Quillen's Theorem B. --- absolute neighborhood retract. --- algebraic K-theory of spaces. --- algebraic K-theory. --- approximate lifting property. --- cofibration. --- degeneracy operator. --- desingularization. --- finite simplicial set. --- h-cobordism theorem. --- homotopy equivalence. --- homotopy fiber sequence. --- horn. --- manifold space. --- manifold. --- n-manifolds. --- normal subdivision. --- polyhedral realization. --- q-simplex. --- reduced mapping cylinder. --- simple map. --- simplicial set. --- space. --- stabilization map. --- stable parametrized h-cobordism theorem. --- tangent microbundle. --- thickening. --- triangulation. --- weak homotopy equivalence. --- Čech homotopy type.
Choose an application
Progress in low-dimensional topology has been very quick in the last three decades, leading to the solutions of many difficult problems. Among the earlier highlights of this period was Casson's λ-invariant that was instrumental in proving the vanishing of the Rohlin invariant of homotopy 3-spheres. The proof of the three-dimensional Poincaré conjecture has rendered this application moot but hardly made Casson's contribution less relevant: in fact, a lot of modern day topology, including a multitude of Floer homology theories, can be traced back to his λ-invariant. The principal goal of this book, now in its second revised edition, remains providing an introduction to the low-dimensional topology and Casson's theory; it also reaches out, when appropriate, to more recent research topics. The book covers some classical material, such as Heegaard splittings, Dehn surgery, and invariants of knots and links. It then proceeds through the Kirby calculus and Rohlin's theorem to Casson's invariant and its applications, and concludes with a brief overview of recent developments. The book will be accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic and differential topology, including the fundamental group, basic homology theory, transversality, and Poincaré duality on manifolds.
Three-manifolds (Topology) --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Low-dimensional topology --- Topological manifolds --- Casson. --- Invariant. --- Manifold. --- Topology.
Choose an application
Differential topology --- Differential geometry. Global analysis --- Four-manifolds (Topology) --- Variétés topologiques à 4 dimensions --- 515.162 --- Low-dimensional manifold topology. Topological surfaces. Topological 3-manifolds, 4-manifolds. Knots. Links. Braids --- Four-manifolds (Topology). --- 515.162 Low-dimensional manifold topology. Topological surfaces. Topological 3-manifolds, 4-manifolds. Knots. Links. Braids --- Variétés topologiques à 4 dimensions
Choose an application
The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.
Four-manifolds (Topology) --- Seiberg-Witten invariants. --- Mathematical physics. --- Physical mathematics --- Physics --- Invariants --- 4-dimensional manifolds (Topology) --- 4-manifolds (Topology) --- Four dimensional manifolds (Topology) --- Manifolds, Four dimensional --- Low-dimensional topology --- Topological manifolds --- Mathematics --- Affine space. --- Affine transformation. --- Algebra bundle. --- Algebraic surface. --- Almost complex manifold. --- Automorphism. --- Banach space. --- Clifford algebra. --- Cohomology. --- Cokernel. --- Complex dimension. --- Complex manifold. --- Complex plane. --- Complex projective space. --- Complex vector bundle. --- Complexification (Lie group). --- Computation. --- Configuration space. --- Conjugate transpose. --- Covariant derivative. --- Curvature form. --- Curvature. --- Differentiable manifold. --- Differential topology. --- Dimension (vector space). --- Dirac equation. --- Dirac operator. --- Division algebra. --- Donaldson theory. --- Duality (mathematics). --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic surface. --- Equation. --- Fiber bundle. --- Frenet–Serret formulas. --- Gauge fixing. --- Gauge theory. --- Gaussian curvature. --- Geometry. --- Group homomorphism. --- Hilbert space. --- Hodge index theorem. --- Homology (mathematics). --- Homotopy. --- Identity (mathematics). --- Implicit function theorem. --- Intersection form (4-manifold). --- Inverse function theorem. --- Isomorphism class. --- K3 surface. --- Kähler manifold. --- Levi-Civita connection. --- Lie algebra. --- Line bundle. --- Linear map. --- Linear space (geometry). --- Linearization. --- Manifold. --- Mathematical induction. --- Moduli space. --- Multiplication theorem. --- Neighbourhood (mathematics). --- One-form. --- Open set. --- Orientability. --- Orthonormal basis. --- Parameter space. --- Parametric equation. --- Parity (mathematics). --- Partial derivative. --- Principal bundle. --- Projection (linear algebra). --- Pullback (category theory). --- Quadratic form. --- Quaternion algebra. --- Quotient space (topology). --- Riemann surface. --- Riemannian manifold. --- Sard's theorem. --- Sign (mathematics). --- Sobolev space. --- Spin group. --- Spin representation. --- Spin structure. --- Spinor field. --- Subgroup. --- Submanifold. --- Surjective function. --- Symplectic geometry. --- Symplectic manifold. --- Tangent bundle. --- Tangent space. --- Tensor product. --- Theorem. --- Three-dimensional space (mathematics). --- Trace (linear algebra). --- Transversality (mathematics). --- Two-form. --- Zariski tangent space.
Choose an application
In this volume, which is dedicated to H. Seifert, are papers based on talks given at the Isle of Thorns conference on low dimensional topology held in 1982.
Low-dimensional topology --- 515.162 --- Topology, Low-dimensional --- Algebraic topology --- Manifolds (Mathematics) --- 515.162 Low-dimensional manifold topology. Topological surfaces. Topological 3-manifolds, 4-manifolds. Knots. Links. Braids --- Low-dimensional manifold topology. Topological surfaces. Topological 3-manifolds, 4-manifolds. Knots. Links. Braids --- Congresses --- Differential topology --- Congresses. --- Low-dimensional topology - Congresses
Choose an application
Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.
Algebraic topology --- 515.16 --- Classifying spaces --- Cobordism theory --- Manifolds (Mathematics) --- Surgery (Topology) --- Differential topology --- Homotopy equivalences --- Topology --- Geometry, Differential --- Spaces, Classifying --- Fiber bundles (Mathematics) --- Fiber spaces (Mathematics) --- Topology of manifolds --- Classifying spaces. --- Cobordism theory. --- Manifolds (Mathematics). --- Surgery (Topology). --- 515.16 Topology of manifolds --- Bijection. --- Calculation. --- Characteristic class. --- Classification theorem. --- Classifying space. --- Closed manifold. --- Cobordism. --- Coefficient. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Complex projective space. --- Connected sum. --- Corollary. --- Cup product. --- Diagram (category theory). --- Differentiable manifold. --- Disjoint union. --- Disk (mathematics). --- Effective method. --- Eilenberg–Moore spectral sequence. --- Elaboration. --- Equivalence class. --- Exact sequence. --- Exterior algebra. --- Fiber bundle. --- Fibration. --- Function composition. --- H-space. --- Homeomorphism. --- Homomorphism. --- Homotopy fiber. --- Homotopy group. --- Homotopy. --- Hopf algebra. --- Iterative method. --- Loop space. --- Manifold. --- Massey product. --- N-sphere. --- Normal bundle. --- Obstruction theory. --- Pairing. --- Permutation. --- Piecewise linear manifold. --- Piecewise linear. --- Polynomial. --- Prime number. --- Projective space. --- Sequence. --- Simply connected space. --- Special case. --- Spin structure. --- Steenrod algebra. --- Subset. --- Summation. --- Tensor product. --- Theorem. --- Topological group. --- Topological manifold. --- Topology. --- Total order. --- Variétés topologiques --- Topologie differentielle
Choose an application
The present book contains 14 papers published in the Special Issue “Differential Geometry” of the journal Mathematics. They represent a selection of the 30 submissions. This book covers a variety of both classical and modern topics in differential geometry. We mention properties of both rectifying and affine curves, the geometry of hypersurfaces, angles in Minkowski planes, Euclidean submanifolds, differential operators and harmonic forms on Riemannian manifolds, complex manifolds, contact manifolds (in particular, Sasakian and trans-Sasakian manifolds), curvature invariants, and statistical manifolds and their submanifolds (in particular, Hessian manifolds). We wish to mention that among the authors, there are both well-known geometers and young researchers. The authors are from countries with a tradition in differential geometry: Belgium, China, Greece, Japan, Korea, Poland, Romania, Spain, Turkey, and United States of America. Many of these papers were already cited by other researchers in their articles. This book is useful for specialists in differential geometry, operator theory, physics, and information geometry as well as graduate students in mathematics.
statistical structure --- constant ratio submanifolds --- Euclidean submanifold --- framed helices --- Sasakian statistical manifold --- L2-harmonic forms --- Hodge–Laplacian --- complete connection --- concircular vector field --- cylindrical hypersurface --- k-th generalized Tanaka–Webster connection --- Casorati curvature --- symplectic curves --- generalized 1-type Gauss map --- rectifying submanifold --- manifold with singularity --- ruled surface --- Minkowski plane --- compact complex surfaces --- conjugate connection --- T-submanifolds --- L2-Stokes theorem --- inextensible flow --- shape operator --- generalized normalized ?-Casorati curvature --- Sasakian manifold --- centrodes --- circular helices --- non-flat complex space form --- invariant --- Frenet frame --- Darboux frame --- trans-Sasakian 3-manifold --- singular points --- symplectic curvatures --- Kähler–Einstein metrics --- conjugate symmetric statistical structure --- sectional ?-curvature --- circular rectifying curves --- developable surface --- capacity --- Ricci soliton --- Reeb flow symmetry --- Minkowskian pseudo-angle --- conical surface --- lie derivative --- position vector field --- pinching of the curvatures --- Hessian manifolds --- Minkowskian angle --- Hessian sectional curvature --- Minkowskian length --- lightlike surface --- affine sphere --- concurrent vector field --- slant --- affine hypersurface --- anti-invariant --- statistical manifolds --- Ricci operator --- C-Bochner tensor --- Ricci curvature --- real hypersurface --- scalar curvature --- framed rectifying curves
Choose an application
This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
Robotics --- Artificial intelligence --- Multivariate causality analysis --- Process monitoring --- Manifold learning --- Fault diagnosis --- Data modeling --- Fault classification --- Fault reasoning --- Causal network --- Probabilistic graphical model --- Data-driven methods --- Industrial monitoring --- Open Access
Listing 1 - 10 of 151 | << page >> |
Sort by
|