Listing 1 - 3 of 3 |
Sort by
|
Choose an application
As the scaling of electronic semiconductor devices displays signs of saturation, the main focus of research in microelectronics is shifting towards finding new computing paradigms. Electron spin offers additional functionality to digital charge-based devices. Several fundamental problems, including spin injection to a semiconductor, spin propagation and relaxation, and spin manipulation by the gate voltage, have been successfully resolved to open a path towards spin-based reprogrammable electron switches. Devices employing electron spin are nonvolatile; they are able to preserve the stored information without external power. Emerging nonvolatile devices are electrically addressable, possess a simple structure, and offer endurance and speed superior to flash memory. Having nonvolatile memory very close to CMOS offers a prospect of data processing in the nonvolatile segment, where the same devices are used to store and process the information. This opens perspectives for conceptually new low-power computing paradigms within Artificial Intelligence of Things (AIoT). This Special Issue focuses on all topics related to spintronic devices such as spin-based switches, magnetoresistive memories, energy harvesting devices, and sensors that can be employed in in-memory computing concepts and in Artificial Intelligence.
magnetic contacts --- reliability --- practical tests --- reaction distance --- extreme conditions --- spin-orbit torque MRAM --- reinforcement learning --- two-pulse switching scheme --- magnetic field-free switching --- machine learning --- torque --- the calculation in memory --- automation --- magnetic recording --- magnetic read heads --- current perpendicular-to-the-plane giant magnetoresistance --- Heusler alloys --- bit-patterned media --- exchange-coupled-composite media --- microwave-assisted magnetic recording --- hysteresis loop --- combined spin-transfer torque (STT) and spin-orbit torque (SOT) switching --- field like torque --- damping like torque --- magnetic tunnel junction --- n/a
Choose an application
As the scaling of electronic semiconductor devices displays signs of saturation, the main focus of research in microelectronics is shifting towards finding new computing paradigms. Electron spin offers additional functionality to digital charge-based devices. Several fundamental problems, including spin injection to a semiconductor, spin propagation and relaxation, and spin manipulation by the gate voltage, have been successfully resolved to open a path towards spin-based reprogrammable electron switches. Devices employing electron spin are nonvolatile; they are able to preserve the stored information without external power. Emerging nonvolatile devices are electrically addressable, possess a simple structure, and offer endurance and speed superior to flash memory. Having nonvolatile memory very close to CMOS offers a prospect of data processing in the nonvolatile segment, where the same devices are used to store and process the information. This opens perspectives for conceptually new low-power computing paradigms within Artificial Intelligence of Things (AIoT). This Special Issue focuses on all topics related to spintronic devices such as spin-based switches, magnetoresistive memories, energy harvesting devices, and sensors that can be employed in in-memory computing concepts and in Artificial Intelligence.
Research & information: general --- Physics --- magnetic contacts --- reliability --- practical tests --- reaction distance --- extreme conditions --- spin-orbit torque MRAM --- reinforcement learning --- two-pulse switching scheme --- magnetic field-free switching --- machine learning --- torque --- the calculation in memory --- automation --- magnetic recording --- magnetic read heads --- current perpendicular-to-the-plane giant magnetoresistance --- Heusler alloys --- bit-patterned media --- exchange-coupled-composite media --- microwave-assisted magnetic recording --- hysteresis loop --- combined spin-transfer torque (STT) and spin-orbit torque (SOT) switching --- field like torque --- damping like torque --- magnetic tunnel junction
Choose an application
Computing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system.
n/a --- image classification --- bipolar resistive switching characteristics --- bioelectronic devices --- self-directed channel (SDC) --- programmable ramp-down current pulses --- nanoparticles --- protein --- DRAM --- convolutional neural networks --- silicon oxide-based memristors --- electrochemical metallization cell --- magnetic tunnel junction --- power gating --- resistance switching mechanism --- BCH --- Fast Fourier Transform --- nucleic acid --- biomemory --- conductive filament --- resistive random access memory (RRAM) --- non-von Neumann architecture --- emerging technologies --- Galois field --- variability --- logic-in-memory --- charge spreading --- memristor --- Hebbian training --- crossbar --- quantum point contact --- SONOS --- bionanohybrid material --- ECG --- neuromorphic computing --- CUDA --- low-latency --- iBM --- Oxygen-related trap --- nonvolatile memory --- phase change memory --- floating gate --- non-von neumann architecture --- 3D-stacked --- STT-MRAM --- solution-based dielectric --- GPU --- Internet of things --- configurable logic-in-memory architecture --- memory wall --- biologic gate --- synaptic weight --- guide training --- ion conduction --- perpendicular Nano Magnetic Logic (pNML) --- Weibull distribution --- real-time system --- in-DRAM cache --- task placement --- dynamic voltage scaling --- MCU (microprogrammed control unit) --- wire resistance --- multi-level cell --- chalcogenide --- decoder --- character recognition --- matrix-vector multiplication --- hybrid --- magnetoresistive random access memory --- blockchain --- electrochemical metallization (ECM) --- RISC-V --- U-shape recessed channel --- neuromorphic system --- in-memory computing --- crossbar array --- associative processor --- low-power --- plasma treatment --- voltage-controlled magnetic anisotropy --- flash memory --- resistive memory --- analogue computing --- bioprocessor --- annealing temperatures --- data retention --- flip-flop --- low-power technique
Listing 1 - 3 of 3 |
Sort by
|