Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (6)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Superhydrophobic Coatings for Corrosion and Tribology
Authors: ---
ISBN: 3039217852 3039217844 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Superhydrophobic surfaces, with a water contact angle >150°, have attracted both academic and industrial interest due to their wide range of applications, such as water proofing, anti-fogging, antifouling, anti-icing, fluidic drag reduction and anti-corrosion. Currently the majority of superhydrophobic coatings are created using organic chemicals with low surface energy. However, the lack of mechanical strength and heat resistance prevents the use of these coatings in harsh environments. Quality superhydrophobic coatings developed using inorganic materials are therefore highly sought after. Ceramics are of particular interest due to their high mechanical strength, heat and corrosion resistance. Such superhydrophobic coatings have recently been successfully fabricated using a variety of ceramics and different approaches, and have shown the improved wear and tribocorrosion resistance properties. This Special Issue focuses on the recent developments in the fabrication of superhydrophobic coatings and their robustness against corrosion and wear resistance, but the original work on other properties of superhydrophobic coatings are also welcome. In particular, the topics of interest include, but are not limited to: Robust superhydrophobic coatings; Coatings with super-wettability in multifunctional applications; Wetting effects on corrosion and tribology; Hierarchical Coating for wetting and modelling.


Book
Science and Technology of Thermal Barrier Coatings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

TBC materials in the hot components of a gas turbine are exposed to extremely harsh environments. Therefore, the evaluation of various environmental factors in applying new TBCs is essential. Understanding the mechanisms for degradation which occur in comprehensive environments plays an important role in preventing it and improving the lifetime performance. The development of novel coating techniques can also have a significant impact on lifetime performance as they can alter the microstructure of the coating and alter the various properties resulting from it. This Special Issue presents an original research paper that reports the development of novel TBCs, particularly the application of advanced deposition techniques and novel materials.


Book
Science and Technology of Thermal Barrier Coatings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

TBC materials in the hot components of a gas turbine are exposed to extremely harsh environments. Therefore, the evaluation of various environmental factors in applying new TBCs is essential. Understanding the mechanisms for degradation which occur in comprehensive environments plays an important role in preventing it and improving the lifetime performance. The development of novel coating techniques can also have a significant impact on lifetime performance as they can alter the microstructure of the coating and alter the various properties resulting from it. This Special Issue presents an original research paper that reports the development of novel TBCs, particularly the application of advanced deposition techniques and novel materials.


Book
Science and Technology of Thermal Barrier Coatings
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

TBC materials in the hot components of a gas turbine are exposed to extremely harsh environments. Therefore, the evaluation of various environmental factors in applying new TBCs is essential. Understanding the mechanisms for degradation which occur in comprehensive environments plays an important role in preventing it and improving the lifetime performance. The development of novel coating techniques can also have a significant impact on lifetime performance as they can alter the microstructure of the coating and alter the various properties resulting from it. This Special Issue presents an original research paper that reports the development of novel TBCs, particularly the application of advanced deposition techniques and novel materials.

Keywords

History of engineering & technology --- degradation --- high mechanical fatigue --- hot gas path components --- gas turbine lifetime --- gas turbine blade --- ANNs --- passive methods --- building energy --- internal covering --- thermal barrier coating (TBC) --- BaLa2Ti3O10 --- molten salt corrosion --- corrosion mechanisms --- crack healing --- encapsulation --- healing agent --- thermal barrier coating --- thermal durability --- cyclic thermal fatigue --- crack growth --- initial crack length --- failure --- hydrogenated amorphous silicon films --- high temperature oxidation --- super-low friction --- plasma spray–physical vapor deposition --- thermal stability --- thermal barrier coatings --- bond coat species --- electron beam-physical vapor deposition --- cyclic thermal exposure --- plasma spraying --- SrZrO3 --- TBC --- CMAS --- luminescence --- high temperature wear behavior --- dry sliding wear --- CoNiCrAlY --- detonation gun (D-gun) --- supersonic plasma spraying (SSPS) --- degradation --- high mechanical fatigue --- hot gas path components --- gas turbine lifetime --- gas turbine blade --- ANNs --- passive methods --- building energy --- internal covering --- thermal barrier coating (TBC) --- BaLa2Ti3O10 --- molten salt corrosion --- corrosion mechanisms --- crack healing --- encapsulation --- healing agent --- thermal barrier coating --- thermal durability --- cyclic thermal fatigue --- crack growth --- initial crack length --- failure --- hydrogenated amorphous silicon films --- high temperature oxidation --- super-low friction --- plasma spray–physical vapor deposition --- thermal stability --- thermal barrier coatings --- bond coat species --- electron beam-physical vapor deposition --- cyclic thermal exposure --- plasma spraying --- SrZrO3 --- TBC --- CMAS --- luminescence --- high temperature wear behavior --- dry sliding wear --- CoNiCrAlY --- detonation gun (D-gun) --- supersonic plasma spraying (SSPS)


Book
Functional Ceramic Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ceramic materials in the form of coatings can significantly improve the functionality and applications of other engineering materials. Due to a wide range of controllable features and various deposition methods, it is possible to create tailored substrate–coating systems that meet the requirements of modern technologies. Therefore, it is crucial to understand the relationships between the structures, morphology and the properties of ceramic coatings and expand the base of scientific knowledge about them. This book contains a series of fourteen articles which present research on the production and properties of ceramic coatings designed to improve functionality for advanced applications.

Keywords

Research & information: general --- Technology: general issues --- photocatalytic coatings --- solidification --- plasma spraying --- TiO2 --- microstructure --- LDPE --- RF CVD --- doped DLC structure --- wettability --- biocompatibility --- ceramic coating --- anti-oxidation --- SiO2@Al additive --- carbon steel --- calcium hydroxyapatite --- sol-gel synthesis --- thin films --- spin coating --- surface roughness --- simulated body fluid --- SiO2 coatings --- sol-gel --- Zn doping --- antibacterial coatings --- hydrophobic coatings --- Ni–Cr alloy --- Ti(C, N) coatings --- ion release --- atmospheric plasma spraying --- Al2O3 --- Cr2O3 --- sliding wear --- phase transformation --- reactivity --- sol-gel coating --- corrosion resistance --- cells viability --- hydrophilic coating --- nitriding --- low friction --- piston ring --- micron-/nano-grain coatings --- nanoindentation size effect --- trans-scale mechanics theory --- SiC coatings --- oxide fibers --- chemical vapor deposition --- deposition mechanism --- thickness control --- silicon carbon-nitride --- silicone carbon-oxide --- PECVD method --- inhomogeneous optical filters --- gradient interference filters --- organosilicon precursors --- alumina coating --- sol–gel --- composite coating --- graphene oxide --- graphene nanoplatelets (GNP) --- rGO --- adiabatic shear instability (ASI) --- cold spray --- titanium dioxide --- bonding mechanism --- adhesion strength --- substrate deformation --- amorphous interface layer --- n/a --- Ni-Cr alloy


Book
Functional Ceramic Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ceramic materials in the form of coatings can significantly improve the functionality and applications of other engineering materials. Due to a wide range of controllable features and various deposition methods, it is possible to create tailored substrate–coating systems that meet the requirements of modern technologies. Therefore, it is crucial to understand the relationships between the structures, morphology and the properties of ceramic coatings and expand the base of scientific knowledge about them. This book contains a series of fourteen articles which present research on the production and properties of ceramic coatings designed to improve functionality for advanced applications.


Book
Functional Ceramic Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ceramic materials in the form of coatings can significantly improve the functionality and applications of other engineering materials. Due to a wide range of controllable features and various deposition methods, it is possible to create tailored substrate–coating systems that meet the requirements of modern technologies. Therefore, it is crucial to understand the relationships between the structures, morphology and the properties of ceramic coatings and expand the base of scientific knowledge about them. This book contains a series of fourteen articles which present research on the production and properties of ceramic coatings designed to improve functionality for advanced applications.

Keywords

Research & information: general --- Technology: general issues --- photocatalytic coatings --- solidification --- plasma spraying --- TiO2 --- microstructure --- LDPE --- RF CVD --- doped DLC structure --- wettability --- biocompatibility --- ceramic coating --- anti-oxidation --- SiO2@Al additive --- carbon steel --- calcium hydroxyapatite --- sol-gel synthesis --- thin films --- spin coating --- surface roughness --- simulated body fluid --- SiO2 coatings --- sol-gel --- Zn doping --- antibacterial coatings --- hydrophobic coatings --- Ni-Cr alloy --- Ti(C, N) coatings --- ion release --- atmospheric plasma spraying --- Al2O3 --- Cr2O3 --- sliding wear --- phase transformation --- reactivity --- sol-gel coating --- corrosion resistance --- cells viability --- hydrophilic coating --- nitriding --- low friction --- piston ring --- micron-/nano-grain coatings --- nanoindentation size effect --- trans-scale mechanics theory --- SiC coatings --- oxide fibers --- chemical vapor deposition --- deposition mechanism --- thickness control --- silicon carbon-nitride --- silicone carbon-oxide --- PECVD method --- inhomogeneous optical filters --- gradient interference filters --- organosilicon precursors --- alumina coating --- sol-gel --- composite coating --- graphene oxide --- graphene nanoplatelets (GNP) --- rGO --- adiabatic shear instability (ASI) --- cold spray --- titanium dioxide --- bonding mechanism --- adhesion strength --- substrate deformation --- amorphous interface layer --- photocatalytic coatings --- solidification --- plasma spraying --- TiO2 --- microstructure --- LDPE --- RF CVD --- doped DLC structure --- wettability --- biocompatibility --- ceramic coating --- anti-oxidation --- SiO2@Al additive --- carbon steel --- calcium hydroxyapatite --- sol-gel synthesis --- thin films --- spin coating --- surface roughness --- simulated body fluid --- SiO2 coatings --- sol-gel --- Zn doping --- antibacterial coatings --- hydrophobic coatings --- Ni-Cr alloy --- Ti(C, N) coatings --- ion release --- atmospheric plasma spraying --- Al2O3 --- Cr2O3 --- sliding wear --- phase transformation --- reactivity --- sol-gel coating --- corrosion resistance --- cells viability --- hydrophilic coating --- nitriding --- low friction --- piston ring --- micron-/nano-grain coatings --- nanoindentation size effect --- trans-scale mechanics theory --- SiC coatings --- oxide fibers --- chemical vapor deposition --- deposition mechanism --- thickness control --- silicon carbon-nitride --- silicone carbon-oxide --- PECVD method --- inhomogeneous optical filters --- gradient interference filters --- organosilicon precursors --- alumina coating --- sol-gel --- composite coating --- graphene oxide --- graphene nanoplatelets (GNP) --- rGO --- adiabatic shear instability (ASI) --- cold spray --- titanium dioxide --- bonding mechanism --- adhesion strength --- substrate deformation --- amorphous interface layer

Listing 1 - 7 of 7
Sort by