Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design.
Research & information: general --- Biology, life sciences --- microfluidics --- micro-mixer --- micro-jet --- XFEL --- molecular imaging --- sample delivery --- steric effect --- power-law fluids --- boundary slip --- oscillatory electroosmotic flow --- mass transport rate --- passive mixing --- curved mixing structure --- confocal microscopy --- mixing efficiency --- light-actuated AC electroosmosis (LACE) --- microfluidic mixer --- optical virtual electrode --- electrokinetics --- computational fluid dynamics (CFD) --- 3D printing --- spiral micromixers --- dean flow --- trapezoidal cross-section --- mixing index --- convection and diffusion --- Kenics micromixer --- numerical simulation --- non-Newtonian fluids --- CMC solutions --- low Reynolds number --- passive micro-mixer --- mixing unit --- cross flow direction --- baffle impingement --- swirl motion --- mixing performance --- mixing --- micromixer --- density control --- lab on a chip --- pneumatically driven --- acoustic streaming --- acoustofluidics --- computational fluid dynamics --- artificial cilia --- flow manipulation --- biological/medical applications --- chaotic micromixer --- Nano-Non-Newtonian fluid --- mass mixing index --- thermal mixing index --- low generalized Reynolds number --- minimal mixing energy cost --- degree of mixing (DOM) --- modified Tesla micromixer --- tip clearance --- symmetric counter-rotating vortices --- drag and connection of interface --- n/a
Choose an application
CFD is an emerging area and is gaining popularity due to the availability of ever-increasing computational power. If used accurately, CFD methods may overcome the limitations of experimental and other numerical methods, in some respects. This Special Issue focuses on Computational Fluid Dynamics (CFD) Simulations of Marine Hydrodynamics with a specific focus on the applications of naval architecture and ocean engineering, and it comprises 24 original articles that advance state-of-the-art CFD applications in marine hydrodynamics and/or review the progress and future directions of research in this field. The published articles cover a wide range of subjects relevant to naval architecture and ocean engineering, including but not limited to; ship resistance and propulsion, seakeeping and maneuverability, hydrodynamics of marine renewable energy devices, validation and verification of computational fluid dynamics (CFD), EFD/CFD combined methods, fouling/coating hydrodynamics.
CFD --- shallow water --- restricted water --- KCS --- spectral analysis of free surfaces --- air resistance --- container ship --- superstructure --- numerical simulation --- trim --- dispersion --- pH --- turbulent Schmidt number --- scrubber --- wash water --- ship hydrodynamics --- ship motions --- green water on deck --- slamming --- cross wave --- near free surface --- unsteady cavitation dynamics --- NACA66 hydrofoil --- dynamic mode decomposition --- wave energy --- computational fluid dynamics --- identification --- viscous damping --- URANS --- computational fluid dynamic --- experimental fluid dynamic --- sailboat --- hull --- towing tank test --- numerical ventilation --- overset --- volume of fluid (VOF), hydrodynamic --- Polito Sailing Team (PST) --- offshore crane --- OpenFOAM --- wave-payload interaction --- NWT --- overset mesh --- planing hull --- seakeeping --- vertical motions --- mesh deformation --- computational fluid dynamics (CFD) --- radial basis function (RBF) method --- inverse distance weighted (IDW) method --- hull form optimization --- Computational Fluid Dynamics --- Verification and Validation --- nearfield wake pattern --- longitudinal wake profile --- distributed propulsion --- draft --- parallel-sided --- NACA --- CAD --- systematic investigation --- low Reynolds number --- sailing --- centerboard --- Bézier curves --- gamma transition criterion --- restricted channel --- resistance correction --- biofouling --- ship performance --- oil tanker --- bulk carrier --- immersed boundary method --- air–water two-phase flows --- VoF method --- finite volume method --- interaction effect --- wind drag --- aerodynamic --- Reynolds Average Navier–Stokes (RANS) --- rudder–propeller interactions --- validations and verification --- actuator disk theory --- rudder sectional forces --- marginal ice zone --- sea ice --- wave --- six degree of freedom (6DoF) motion --- planing craft --- twin side-hulls --- porpoising instability --- model tests --- inhibition mechanism --- optimal location --- ship resistance --- form factor --- best practice guidelines --- numerical friction line --- combined CFD/EFD methods --- next generation subsea production system --- Immersed Buoyant Platform --- hydrodynamic characteristics --- ultra-deep sea --- swallowing capacity --- duct flow --- ducted turbine --- roughness effect --- Wigley hull --- heterogeneous hull roughness
Choose an application
CFD is an emerging area and is gaining popularity due to the availability of ever-increasing computational power. If used accurately, CFD methods may overcome the limitations of experimental and other numerical methods, in some respects. This Special Issue focuses on Computational Fluid Dynamics (CFD) Simulations of Marine Hydrodynamics with a specific focus on the applications of naval architecture and ocean engineering, and it comprises 24 original articles that advance state-of-the-art CFD applications in marine hydrodynamics and/or review the progress and future directions of research in this field. The published articles cover a wide range of subjects relevant to naval architecture and ocean engineering, including but not limited to; ship resistance and propulsion, seakeeping and maneuverability, hydrodynamics of marine renewable energy devices, validation and verification of computational fluid dynamics (CFD), EFD/CFD combined methods, fouling/coating hydrodynamics.
Technology: general issues --- CFD --- shallow water --- restricted water --- KCS --- spectral analysis of free surfaces --- air resistance --- container ship --- superstructure --- numerical simulation --- trim --- dispersion --- pH --- turbulent Schmidt number --- scrubber --- wash water --- ship hydrodynamics --- ship motions --- green water on deck --- slamming --- cross wave --- near free surface --- unsteady cavitation dynamics --- NACA66 hydrofoil --- dynamic mode decomposition --- wave energy --- computational fluid dynamics --- identification --- viscous damping --- URANS --- computational fluid dynamic --- experimental fluid dynamic --- sailboat --- hull --- towing tank test --- numerical ventilation --- overset --- volume of fluid (VOF), hydrodynamic --- Polito Sailing Team (PST) --- offshore crane --- OpenFOAM --- wave-payload interaction --- NWT --- overset mesh --- planing hull --- seakeeping --- vertical motions --- mesh deformation --- computational fluid dynamics (CFD) --- radial basis function (RBF) method --- inverse distance weighted (IDW) method --- hull form optimization --- Computational Fluid Dynamics --- Verification and Validation --- nearfield wake pattern --- longitudinal wake profile --- distributed propulsion --- draft --- parallel-sided --- NACA --- CAD --- systematic investigation --- low Reynolds number --- sailing --- centerboard --- Bézier curves --- gamma transition criterion --- restricted channel --- resistance correction --- biofouling --- ship performance --- oil tanker --- bulk carrier --- immersed boundary method --- air–water two-phase flows --- VoF method --- finite volume method --- interaction effect --- wind drag --- aerodynamic --- Reynolds Average Navier–Stokes (RANS) --- rudder–propeller interactions --- validations and verification --- actuator disk theory --- rudder sectional forces --- marginal ice zone --- sea ice --- wave --- six degree of freedom (6DoF) motion --- planing craft --- twin side-hulls --- porpoising instability --- model tests --- inhibition mechanism --- optimal location --- ship resistance --- form factor --- best practice guidelines --- numerical friction line --- combined CFD/EFD methods --- next generation subsea production system --- Immersed Buoyant Platform --- hydrodynamic characteristics --- ultra-deep sea --- swallowing capacity --- duct flow --- ducted turbine --- roughness effect --- Wigley hull --- heterogeneous hull roughness
Choose an application
CFD is an emerging area and is gaining popularity due to the availability of ever-increasing computational power. If used accurately, CFD methods may overcome the limitations of experimental and other numerical methods, in some respects. This Special Issue focuses on Computational Fluid Dynamics (CFD) Simulations of Marine Hydrodynamics with a specific focus on the applications of naval architecture and ocean engineering, and it comprises 24 original articles that advance state-of-the-art CFD applications in marine hydrodynamics and/or review the progress and future directions of research in this field. The published articles cover a wide range of subjects relevant to naval architecture and ocean engineering, including but not limited to; ship resistance and propulsion, seakeeping and maneuverability, hydrodynamics of marine renewable energy devices, validation and verification of computational fluid dynamics (CFD), EFD/CFD combined methods, fouling/coating hydrodynamics.
Technology: general issues --- CFD --- shallow water --- restricted water --- KCS --- spectral analysis of free surfaces --- air resistance --- container ship --- superstructure --- numerical simulation --- trim --- dispersion --- pH --- turbulent Schmidt number --- scrubber --- wash water --- ship hydrodynamics --- ship motions --- green water on deck --- slamming --- cross wave --- near free surface --- unsteady cavitation dynamics --- NACA66 hydrofoil --- dynamic mode decomposition --- wave energy --- computational fluid dynamics --- identification --- viscous damping --- URANS --- computational fluid dynamic --- experimental fluid dynamic --- sailboat --- hull --- towing tank test --- numerical ventilation --- overset --- volume of fluid (VOF), hydrodynamic --- Polito Sailing Team (PST) --- offshore crane --- OpenFOAM --- wave-payload interaction --- NWT --- overset mesh --- planing hull --- seakeeping --- vertical motions --- mesh deformation --- computational fluid dynamics (CFD) --- radial basis function (RBF) method --- inverse distance weighted (IDW) method --- hull form optimization --- Computational Fluid Dynamics --- Verification and Validation --- nearfield wake pattern --- longitudinal wake profile --- distributed propulsion --- draft --- parallel-sided --- NACA --- CAD --- systematic investigation --- low Reynolds number --- sailing --- centerboard --- Bézier curves --- gamma transition criterion --- restricted channel --- resistance correction --- biofouling --- ship performance --- oil tanker --- bulk carrier --- immersed boundary method --- air–water two-phase flows --- VoF method --- finite volume method --- interaction effect --- wind drag --- aerodynamic --- Reynolds Average Navier–Stokes (RANS) --- rudder–propeller interactions --- validations and verification --- actuator disk theory --- rudder sectional forces --- marginal ice zone --- sea ice --- wave --- six degree of freedom (6DoF) motion --- planing craft --- twin side-hulls --- porpoising instability --- model tests --- inhibition mechanism --- optimal location --- ship resistance --- form factor --- best practice guidelines --- numerical friction line --- combined CFD/EFD methods --- next generation subsea production system --- Immersed Buoyant Platform --- hydrodynamic characteristics --- ultra-deep sea --- swallowing capacity --- duct flow --- ducted turbine --- roughness effect --- Wigley hull --- heterogeneous hull roughness
Listing 1 - 4 of 4 |
Sort by
|