Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Advances in Mobile Mapping Technologies
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mobile mapping is applied widely in society, for example, in asset management, fleet management, construction planning, road safety, and maintenance optimization. Yet, further advances in these technologies are called for. Advances can be radical, such as changes to the prevailing paradigms in mobile mapping, or incremental, such as the state-of-the-art mobile mapping methods. With current multi-sensor systems in mobile mapping, laser-scanned data are often registered in point clouds with the aid of global navigation satellite system (GNSS) positioning or simultaneous localization and mapping (SLAM) techniques and then labeled and colored with the aid of machine learning methods and digital camera data. These multi-sensor platforms are beginning to undergo further advancements via the addition of multi-spectral and other sensors and via the development of machine learning techniques used in processing this multi-modal data. Embedded systems and minimalistic system designs are also attracting attention, from both academic and commercial perspectives.This book contains the accepted publications of the Special Issue 'Advances in Mobile Mapping Technologies' of the Remote Sensing journal. It consists of works introducing a new mobile mapping dataset (‘Paris CARLA 3D’), system calibration studies, SLAM topics, and multiple deep learning works for asset detection. We, the Guest Editors, Ville Lehtola from University of Twente, Netherlands, Andreas Nüchter from University of Würzburg, Germany, and François Goulette from Mines Paris- PSL University, France, wish to thank all the authors who contributed to this collection.

Keywords

Technology: general issues --- History of engineering & technology --- LiDAR --- RetinaNet --- inception --- Mobile Laser Scanning --- point clouds --- data fusion --- Lidar --- point cloud density --- point cloud coverage --- mobile mapping systems --- 3D simulation --- Pandar64 --- Ouster OS-1-64 --- mobile laser scanning --- lever arm --- boresight angles --- plane-based calibration field --- configuration analysis --- accuracy --- controllability --- evaluation --- control points --- TLS reference point clouds --- visual–inertial odometry --- Helmert variance component estimation --- line feature matching method --- correlation coefficient --- point and line features --- mobile mapping --- manhole cover --- point cloud --- F-CNN --- transfer learning --- CAM localization --- loop closure detection --- visual SLAM --- semantic topology graph --- graph matching --- CNN features --- deep learning --- view planning --- imaging network design --- building 3D modelling --- path planning --- V-SLAM --- real-time --- guidance --- embedded-systems --- 3D surveying --- exposure control --- photogrammetry --- parking statistics --- vehicle detection --- robot operating system --- 3D camera --- RGB-D --- performance evaluation --- convolutional neural networks --- smart city --- georeferencing --- MSS --- IEKF --- DSIEKF --- geometrical constraints --- 6-DoF --- DTM --- 3D city model --- dataset --- laser scanning --- 3D mapping --- synthetic --- outdoor --- semantic --- scene completion


Book
Advances in Mobile Mapping Technologies
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mobile mapping is applied widely in society, for example, in asset management, fleet management, construction planning, road safety, and maintenance optimization. Yet, further advances in these technologies are called for. Advances can be radical, such as changes to the prevailing paradigms in mobile mapping, or incremental, such as the state-of-the-art mobile mapping methods. With current multi-sensor systems in mobile mapping, laser-scanned data are often registered in point clouds with the aid of global navigation satellite system (GNSS) positioning or simultaneous localization and mapping (SLAM) techniques and then labeled and colored with the aid of machine learning methods and digital camera data. These multi-sensor platforms are beginning to undergo further advancements via the addition of multi-spectral and other sensors and via the development of machine learning techniques used in processing this multi-modal data. Embedded systems and minimalistic system designs are also attracting attention, from both academic and commercial perspectives.This book contains the accepted publications of the Special Issue 'Advances in Mobile Mapping Technologies' of the Remote Sensing journal. It consists of works introducing a new mobile mapping dataset (‘Paris CARLA 3D’), system calibration studies, SLAM topics, and multiple deep learning works for asset detection. We, the Guest Editors, Ville Lehtola from University of Twente, Netherlands, Andreas Nüchter from University of Würzburg, Germany, and François Goulette from Mines Paris- PSL University, France, wish to thank all the authors who contributed to this collection.


Book
Advances in Mobile Mapping Technologies
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mobile mapping is applied widely in society, for example, in asset management, fleet management, construction planning, road safety, and maintenance optimization. Yet, further advances in these technologies are called for. Advances can be radical, such as changes to the prevailing paradigms in mobile mapping, or incremental, such as the state-of-the-art mobile mapping methods. With current multi-sensor systems in mobile mapping, laser-scanned data are often registered in point clouds with the aid of global navigation satellite system (GNSS) positioning or simultaneous localization and mapping (SLAM) techniques and then labeled and colored with the aid of machine learning methods and digital camera data. These multi-sensor platforms are beginning to undergo further advancements via the addition of multi-spectral and other sensors and via the development of machine learning techniques used in processing this multi-modal data. Embedded systems and minimalistic system designs are also attracting attention, from both academic and commercial perspectives.This book contains the accepted publications of the Special Issue 'Advances in Mobile Mapping Technologies' of the Remote Sensing journal. It consists of works introducing a new mobile mapping dataset (‘Paris CARLA 3D’), system calibration studies, SLAM topics, and multiple deep learning works for asset detection. We, the Guest Editors, Ville Lehtola from University of Twente, Netherlands, Andreas Nüchter from University of Würzburg, Germany, and François Goulette from Mines Paris- PSL University, France, wish to thank all the authors who contributed to this collection.

Keywords

Technology: general issues --- History of engineering & technology --- LiDAR --- RetinaNet --- inception --- Mobile Laser Scanning --- point clouds --- data fusion --- Lidar --- point cloud density --- point cloud coverage --- mobile mapping systems --- 3D simulation --- Pandar64 --- Ouster OS-1-64 --- mobile laser scanning --- lever arm --- boresight angles --- plane-based calibration field --- configuration analysis --- accuracy --- controllability --- evaluation --- control points --- TLS reference point clouds --- visual–inertial odometry --- Helmert variance component estimation --- line feature matching method --- correlation coefficient --- point and line features --- mobile mapping --- manhole cover --- point cloud --- F-CNN --- transfer learning --- CAM localization --- loop closure detection --- visual SLAM --- semantic topology graph --- graph matching --- CNN features --- deep learning --- view planning --- imaging network design --- building 3D modelling --- path planning --- V-SLAM --- real-time --- guidance --- embedded-systems --- 3D surveying --- exposure control --- photogrammetry --- parking statistics --- vehicle detection --- robot operating system --- 3D camera --- RGB-D --- performance evaluation --- convolutional neural networks --- smart city --- georeferencing --- MSS --- IEKF --- DSIEKF --- geometrical constraints --- 6-DoF --- DTM --- 3D city model --- dataset --- laser scanning --- 3D mapping --- synthetic --- outdoor --- semantic --- scene completion


Book
Intelligent Vehicles
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Keywords

History of engineering & technology --- tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation


Book
Intelligent Vehicles
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Keywords

tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation


Book
Intelligent Vehicles
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Keywords

History of engineering & technology --- tracking-by-detection --- multi-vehicle tracking --- Siamese network --- data association --- Markov decision process --- driving behavior --- real-time monitoring --- driver distraction --- mobile application --- portable system --- simulation test --- dynamic driving behavior --- traffic scene augmentation --- corridor model --- IMU --- vision --- classification networks --- Hough transform --- lane markings detection --- semantic segmentation --- transfer learning --- autonomous --- off-road driving --- tire-road forces estimation --- slip angle estimation --- gauge sensors --- fuzzy logic system --- load transfer estimation --- simulation results --- normalization --- lateral force empirical model --- driver monitor --- lane departure --- statistical process control --- fault detection --- sensor fault --- signal restoration --- intelligent vehicle --- autonomous vehicle --- kinematic model --- visual SLAM --- sparse direct method --- photometric calibration --- corner detection and filtering --- loop closure detection --- road friction coefficient --- tire model --- nonlinear observer --- self-aligning torque --- lateral displacement --- Lyapunov method --- automatic parking system (APS) --- end-to-end parking --- reinforcement learning --- parking slot tracking --- deceleration planning --- multi-layer perceptron --- smart regenerative braking --- electric vehicles --- vehicle speed prediction --- driver behavior modeling --- electric vehicle control --- driver characteristics online learning --- objects’ edge detection --- stixel histograms accumulate --- point cloud segmentation --- autonomous vehicles --- scene understanding --- occlusion reasoning --- road detection --- advanced driver assistance system --- trajectory prediction --- risk assessment --- collision warning --- connected vehicles --- vehicular communications --- vulnerable road users --- fail-operational systems --- fall-back strategy --- automated driving --- advanced driving assistance systems --- illumination --- shadow detection --- shadow edge --- image processing --- traffic light detection --- intelligent transportation system --- lane-changing --- merging maneuvers --- game theory --- decision-making --- intelligent vehicles --- model predictive controller --- automatic train operation --- softness factor --- fusion velocity --- online obtaining --- hardware-in-the-loop simulation --- driving assistant --- driving diagnosis --- accident risk maps --- driving safety --- intelligent driving --- virtual test environment --- millimeter wave radar --- lane-change decision --- risk perception --- mixed traffic --- minimum safe deceleration --- automated driving system (ADS) --- sensor fusion --- multi-lane detection --- particle filter --- self-driving car --- unscented Kalman filter --- vehicle model --- Monte Carlo localization --- millimeter-wave radar --- square-root cubature Kalman filter --- Sage-Husa algorithm --- target tracking --- stationary and moving object classification --- localization --- LiDAR --- GNSS --- Global Positioning System (GPS) --- monte carlo --- autonomous driving --- robot motion --- path planning --- piecewise linear approximation --- multiple-target path planning --- autonomous mobile robot --- homotopy based path planning --- LiDAR signal processing --- sensor and information fusion --- advanced driver assistance systems --- autonomous racing --- high-speed camera --- real-time systems --- LiDAR odometry --- fail-aware --- sensors --- sensing --- percepction --- object detection and tracking --- scene segmentation --- vehicle positioning --- fail-x systems --- driver behavior modelling --- automatic operation

Listing 1 - 6 of 6
Sort by