Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
Lithium sulfur batteries. --- Li-S batteries --- Li-S cells --- Lithium sulfur cells --- Electric batteries --- Storage batteries --- Lithium-sulfur cells --- Lithium-sulphur batteries --- Lithium-sulphur cells --- Lithium-sulfur batteries.
Choose an application
This research text explores the fundamentals, working mechanisms, electrode materials, challenges, and opportunities for energy storage devices of lithium-ion and lithium-sulfur battery technology.
Choose an application
Lithium-Sulfur Batteries: Materials, Challenges, and Applications presents the advantages of lithium-sulfur batteries, such as high theoretical capacity, low cost, and stability, while also addressing some of the existing challenges. Some of the challenges are low electrical conductivity, the possible reaction of sulfur with lithium to form a soluble lithium salt, the formation of the dendrimer, large volume variation of cathode materials during the electrochemical reaction, and shuttle behavior of highly soluble intermediate polysulfides in the electrolyte. This book provides some possible solutions to these issues through novel architecture, using composite materials, doping to improve low conductivity, etc., as well as emphasizing novel materials, architectural concepts, and methods to improve the performance of lithium-sulfur batteries. Covers the state-of-the-art progress on materials, technology, and challenges for lithium-sulfur batteries Presents novel synthetic approaches, characterizations, and applications of nanostructured and 2D nanomaterials for energy applications Provides fundamentals of electrochemical behavior and their understanding at nanoscale for emerging applications in lithium-sulfur batteries
Lithium-sulfur batteries. --- Li-S batteries --- Li-S cells --- Lithium-sulfur cells --- Lithium-sulphur batteries --- Lithium-sulphur cells --- Electric batteries --- Storage batteries
Choose an application
"Lithium-sulfur (Li-S) batteries provide an alternative to lithium-ion (Li-ion) batteries and are showing promise for providing much higher energy densities. Systems utilizing Li-S batteries are presently under development and early stages of commercialization. This technology is being developed in order to provide higher, safer levels of energy at significantly lower costs. Lithium-Sulfur Batteries: Advances in High-Energy Density Batteries addresses various aspects of the current research in the field of sulfur cathodes and lithium metal anode including abundance, system voltage, and capacity. In addition, it provides insights into the basic challenges faced by the system. The book includes novel strategies to prevent polysulfide dissolution in sulfur-based systems while also exploring new materials systems as anodes preventing dendrite formation in Li metal anodes."--
Lithium-sulfur batteries. --- Li-S batteries --- Li-S cells --- Lithium-sulfur cells --- Lithium-sulphur batteries --- Lithium-sulphur cells --- Electric batteries --- Storage batteries
Choose an application
This book presents the latest advances in rechargeable lithium-sulfur (Li-S) batteries and provides a guide for future developments in this field. Novel electrode compositions and architectures as well as innovative cell designs are needed to make Li-S technology practically viable. Nowadays, several challenges still persist, such as the shuttle of lithium polysulfides and the poor reversibility of lithium-metal anode, among others. However over the past several years significant progress has been made in the research and development of Li-S batteries. This book addresses most aspects of Li-S batteries and reviews the topic in depth.
Force and energy. --- Lithium-sulfur batteries. --- Li-S batteries --- Li-S cells --- Lithium-sulfur cells --- Lithium-sulphur batteries --- Lithium-sulphur cells --- Electric batteries --- Storage batteries --- Conservation of energy --- Correlation of forces --- Energy --- Physics --- Dynamics
Choose an application
This book presents the latest advances in rechargeable lithium-sulfur (Li-S) batteries and provides a guide for future developments in this field. Novel electrode compositions and architectures as well as innovative cell designs are needed to make Li-S technology practically viable. Nowadays, several challenges still persist, such as the shuttle of lithium polysulfides and the poor reversibility of lithium-metal anode, among others. However over the past several years significant progress has been made in the research and development of Li-S batteries. This book addresses most aspects of Li-S batteries and reviews the topic in depth.
Electric batteries. --- Materials. --- Electrochemistry. --- Chemistry, Physical and theoretical --- Engineering design --- Manufacturing processes --- Engineering --- Engineering materials --- Industrial materials --- Electric power supplies to apparatus --- Electrochemistry --- Thermopiles --- Batteries, Electric --- Batteries (Electricity) --- Cell, Voltaic --- Electrical batteries --- Electrochemical cells --- Galvanic batteries --- Voltaic cell --- Materials --- Force and energy. --- Lithium-sulfur batteries. --- Li-S batteries --- Li-S cells --- Lithium-sulfur cells --- Lithium-sulphur batteries --- Lithium-sulphur cells --- Electric batteries --- Storage batteries --- Conservation of energy --- Correlation of forces --- Energy --- Physics --- Dynamics
Choose an application
This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the “solid-solid” reaction instead of the “sulfur-polysulfides-lithium sulfides” reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives. The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
Electrochemistry --- Chemical structure --- Chemistry --- Relation between energy and economics --- Electrical engineering --- Applied physical engineering --- Biotechnology --- energie-economie --- nanotechniek --- elektrische netwerken --- chemie --- energie (technologie) --- biotechnologie --- ingenieurswetenschappen --- elektrochemie --- elektriciteitsdistributie --- Lithium sulfur batteries --- Nanostructured materials. --- Materials. --- Nanomaterials --- Nanometer materials --- Nanophase materials --- Nanostructure controlled materials --- Nanostructure materials --- Ultra-fine microstructure materials --- Microstructure --- Nanotechnology --- Li-S batteries --- Li-S cells --- Lithium sulfur cells --- Electric batteries --- Storage batteries --- Electrochemistry. --- Energy storage. --- Nanotechnology. --- Energy Storage. --- Nanotechnology and Microengineering. --- Molecular technology --- Nanoscale technology --- High technology --- Storage of energy --- Force and energy --- Power (Mechanics) --- Flywheels --- Pulsed power systems --- Chemistry, Physical and theoretical
Choose an application
Based on 19 high-quality articles, this Special Issue presents methods for further improving the currently achievable recycling rate, product quality in terms of focused elements, and approaches for the enhanced mobilization of lithium, graphite, and electrolyte components. In particular, the target of early-stage Li removal is a central point of various research approaches in the world, which has been reported, for example, under the names early-stage lithium recovery (ESLR process) with or without gaseous CO2 and supercritical CO2 leaching (COOL process). Furthermore, many more approaches are present in this Special Issue, ranging from robotic disassembly and the dismantling of Li‐ion batteries, or the optimization of various pyro‐ and hydrometallurgical as well as combined battery recycling processes for the treatment of conventional Li‐ion batteries, all the way to an evaluation of the recycling on an industrial level. In addition to the consideration of Li distribution in compounds of a Li2O-MgO-Al2O3-SiO2-CaO system, Li recovery from battery slags is also discussed. The development of suitable recycling strategies of six new battery systems, such as all-solid-state batteries, but also lithium–sulfur batteries, is also taken into account here. Some of the articles also discuss the fact that battery recycling processes do not have to produce end products such as high-purity battery materials, but that the aim should be to find an “entry point” into existing, proven large-scale industrial processes. Participants in this Special Issue originate from 18 research institutions from eight countries.
Technology: general issues --- History of engineering & technology --- Mining technology & engineering --- lead-acid battery recycling --- pyrite cinder treatment --- lead bullion --- sulfide matte --- SO2 emissions --- pilot plant --- environmental technologies --- waste treatment --- recycling --- spent lithium-ion batteries --- recycling chain --- process stages --- unit processes --- industrial recycling technologies --- mechanical treatment --- slag cleaning --- cobalt --- nickel --- manganese --- lithium-ion battery --- circular economy --- batteries --- reuse --- disassembly --- safety --- lithium minerals --- lithium slag characterization --- thermochemical modeling --- critical raw materials --- smelting --- lithium --- graphite --- mechanical processing --- pyrometallurgy --- thermal treatment --- pyrolysis --- hydrometallurgy --- precipitation --- oxalic acid --- mixed oxalate --- battery recycling --- lithium–sulfur batteries --- metallurgical recycling --- metal recovery --- recycling efficiency --- lithium-ion batteries --- all-solid-state batteries --- slag --- leaching --- dry digestion --- fractionation --- tubular centrifuge --- rotational speed control --- particle size analysis --- lithium iron phosphate --- LFP --- carbon black --- direct battery recycling --- recovery --- thermodynamic modeling --- engineered artificial minerals (EnAM) --- melt experiments --- PXRD --- EPMA --- manganese recovery --- solvent extraction --- D2EHPA --- factorial design of experiments --- lithium-ion batteries (LIBs) --- lithium removal --- phosphorous removal --- recovery of valuable metals --- carbonation --- lithium phase transformation --- autoclave --- supercritical CO2 --- X-ray absorption near edge structure (XANES) --- powder X-ray diffraction (PXRD) --- electron probe microanalysis (EPMA) --- lithium recycling --- lithium batteries --- black mass --- LIB --- mechanical recycling processes --- battery generation --- solid state batteries --- robotic disassembly --- electric vehicle battery --- task planner --- n/a --- lithium-sulfur batteries
Choose an application
This Special Issue includes recent research articles and extensive reviews on graphene-based next-generation electronics, bringing together perspectives from different branches of science and engineering. The papers presented in this volume cover experimental, computational and theoretical aspects of the electrical and thermal properties of graphene and its applications in batteries, electrodes, sensors and ferromagnetism. In addition, this Special Issue covers many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization and applications of graphene-based nanocomposites.
Technology: general issues --- graphene --- chemical vapor deposition --- electronic materials --- enantiomer recognition --- phenylalanine --- liquid exfoliation --- polyvinylidene fluoride --- conductive adhesives --- flexiable --- carbon honeycomb --- molecular dynamics --- LAMMPS --- uniaxial tension --- nanoindentation --- EDLC --- rGO scrolls --- thiol functionalization --- supercapacitor --- energy and power density --- carbon foam --- nanomaterials --- phase change material --- thermal conductivity --- latent heat storage --- graphene oxide --- PEEP --- ROP --- grafting-from --- electrical --- thermal --- thermoelectric --- applications --- hydrogenated epitaxial graphene --- electronic structure --- ferromagnetism --- Graphene --- Graphene Oxide --- 2D materials --- Electrochemical --- Biosensor --- mechanical properties --- thermal properties --- defect --- molecular dynamic --- CVD graphene --- transfer --- ruga --- wrinkle --- ripple --- Raman spectroscopy --- AFM --- SnO2 aerogel --- sol–gel method --- nanocomposite --- photocatalysis --- PVDF --- HDPE --- graphene nanoplatelet --- nanocomposites --- electrical properties --- electronic and thermal properties --- electronic and thermal conductivity --- quantum Hall effect --- Dirac fermions --- Seebeck coefficient --- thermoelectric effect --- graphene-based applications --- metasurface --- phase shift --- polarization --- wavefront shaping --- tunability --- humidity sensors --- reduced graphene oxide --- chemical modified graphene --- graphene/polymer --- graphene quantum dots --- graphene/metal oxide --- graphene/2D materials --- carbon-coated separator --- polysulfide --- shuttle effect --- lithium–sulfur batteries --- pyrolysis fuel oil (PFO) --- isotropic pitch --- carbon fiber --- transparent heater --- PECVD --- n/a --- sol-gel method --- lithium-sulfur batteries
Choose an application
This Special Issue includes recent research articles and extensive reviews on graphene-based next-generation electronics, bringing together perspectives from different branches of science and engineering. The papers presented in this volume cover experimental, computational and theoretical aspects of the electrical and thermal properties of graphene and its applications in batteries, electrodes, sensors and ferromagnetism. In addition, this Special Issue covers many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization and applications of graphene-based nanocomposites.
graphene --- chemical vapor deposition --- electronic materials --- enantiomer recognition --- phenylalanine --- liquid exfoliation --- polyvinylidene fluoride --- conductive adhesives --- flexiable --- carbon honeycomb --- molecular dynamics --- LAMMPS --- uniaxial tension --- nanoindentation --- EDLC --- rGO scrolls --- thiol functionalization --- supercapacitor --- energy and power density --- carbon foam --- nanomaterials --- phase change material --- thermal conductivity --- latent heat storage --- graphene oxide --- PEEP --- ROP --- grafting-from --- electrical --- thermal --- thermoelectric --- applications --- hydrogenated epitaxial graphene --- electronic structure --- ferromagnetism --- Graphene --- Graphene Oxide --- 2D materials --- Electrochemical --- Biosensor --- mechanical properties --- thermal properties --- defect --- molecular dynamic --- CVD graphene --- transfer --- ruga --- wrinkle --- ripple --- Raman spectroscopy --- AFM --- SnO2 aerogel --- sol–gel method --- nanocomposite --- photocatalysis --- PVDF --- HDPE --- graphene nanoplatelet --- nanocomposites --- electrical properties --- electronic and thermal properties --- electronic and thermal conductivity --- quantum Hall effect --- Dirac fermions --- Seebeck coefficient --- thermoelectric effect --- graphene-based applications --- metasurface --- phase shift --- polarization --- wavefront shaping --- tunability --- humidity sensors --- reduced graphene oxide --- chemical modified graphene --- graphene/polymer --- graphene quantum dots --- graphene/metal oxide --- graphene/2D materials --- carbon-coated separator --- polysulfide --- shuttle effect --- lithium–sulfur batteries --- pyrolysis fuel oil (PFO) --- isotropic pitch --- carbon fiber --- transparent heater --- PECVD --- n/a --- sol-gel method --- lithium-sulfur batteries
Listing 1 - 10 of 15 | << page >> |
Sort by
|