Listing 1 - 10 of 38 | << page >> |
Sort by
|
Choose an application
Civil engineering --- Life cycle costing. --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial
Choose an application
Life Cycle Assessment (LCA) is the internationally recognized method to assess the environmental impacts of products and services. Its application to agri-food systems in developing or emerging contexts is recent and represents many challenges of scientific, partnerial and operational nature. With more than 10 years of scientific and field experience, the CIRAD LCA team has synthesized, with other internationally recognized experts, the best knowledge and approaches available to apply LCA under these conditions. This operational guide is a useful tool for LCA practitioners; it provides best practice recommendations to carry out LCA studies on agri-food products in developing and emerging contexts.
Life cycle costing. --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial
Choose an application
Civil engineering --- Life cycle costing. --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial
Choose an application
Afin de répondre aux enjeux climatiques qui se font de plus en plus ressentir à travers le monde, la Directive européenne sur la performance énergétique des bâtiments (EPBD) n’a cessé, depuis sa création en 2002, de publier toute une série de directives et recommandations visant à renforcer l’efficacité énergétique des bâtiments. Avec la traduction par les autorités wallonnes des dernières révisions de la Directive, toute nouvelle habitation doit répondre depuis 2021 aux normes QZEN (Quasi Zéro Énergie) afin de donner une chance à l'Europe d'atteindre d’ici 2030 ses objectifs de 40% de réduction des gaz à effet de serre par rapport au niveau de 1990. Cette nouvelle réglementation soulève toute une série de questionnements sur la conception des bâtiments, tant au niveau technique, économique et environnemental. Ce travail se concentre sur les aspects techniques et les coûts financiers à court et long terme pour la construction dans le secteur résidentiel. Ainsi, la première intention du mémoire consiste à explorer les techniques les plus couramment rencontrées pour atteindre des consommations énergétiques quasi nulles. Ensuite, le second objectif cherche à déterminer un prix de construction moyen nécessaire pour bâtir selon ces nouvelles normes. Enfin, une dernière question examine si les exigences zéro énergie sont économiquement favorables sur le budget à court et long terme du particulier. Les deux premières questions sont étudiées à travers la réalisation d’un benchmarking de bâtiments résidentiels considérés comme très performants et sélectionnés selon une série de critères qui permettent une comparaison. Tous les cas d’étude analysés sont issus de la plateforme collaborative Construction21. Plusieurs données propres aux caractéristiques de l’enveloppe des bâtiments et aux équipements techniques ont été extraites et comparées afin de dégager des tendances sur les mises en œuvre qui permettent d’atteindre les niveaux QZEN. Les coûts de construction étant également disponibles sur l’outil Construction21, ceux-ci ont été compilés afin d’en retirer une valeur médiane pour les maisons individuelles et les logements collectifs. La seconde partie du mémoire permet de tirer des liens entre considérations techniques et financières. Un cas d’étude a été sélectionné selon les mêmes critères que ceux qui ont servi à établir le benchmarking. Différents scénarios tendant progressivement vers le zéro énergie ont été modélisés afin d’évaluer les impacts de cette exigence sur les coûts de construction, mais également sur les dépenses à long terme. Pour ce faire, une analyse des coûts du cycle de vie (ACCV) sur une période de 40 ans a été réalisée pour chacun des scénarios afin de déterminer quelles sont les stratégies qui permettent d’améliorer la consommation des bâtiments tout en limitant l’impact sur les coûts. Les consommations énergétiques ont quant à elles été déterminées à l’aide du logiciel DesignBuilder et son moteur de calcul EnergyPlus. Enfin, le scénario zéro énergie modélisé est comparé aux résultats du benchmarking afin de voir si celui-ci s’inscrit dans les conclusions tirées dans la première partie du mémoire. Le travail se conclut sur une discussion synthétisant les différents résultats, pointant notamment les limites de l’étude, et en annonçant les perspectives qui pourraient être envisagées afin de poursuivre la recherche sur la thématique.
Choose an application
Mineral industries --- Life cycle costing --- Environmental aspects. --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial --- Mining engineering --- Environmental aspects
Choose an application
MARPOL Annex VI regulates the emissions from all ships trading internationally. Ship owners must take actions before the lowest limits come into force. The combined challenges of rising oil prices and increasing regulatory stringency on shipping’s air emissions justify the exploration of feasibilities between compliant technologies. This study focuses on the scrubber technology for large marine engines with which ships can continue to use preferable cheap heavy fuel oil (HFO) without exceeding the emission control limits. It draws on existing technical and economical information about scrubber systems in the market to establish a complete life cycle cost analysis for four vessel types: Containership, passenger ship, Ro-Pax and tanker. An investigation of the technology overview, cost data, emission reduction efficiency, impact of installations, operational issues and installation case studies is conducted. Environmental impacts such as wash water discharge, sludge disposal and end-of-life recycling are also addressed. By choosing the marine gas oil (MGO) utilisation as the baseline, the life cycle cost analysis is performed between different types of scrubber system, namely open loop seawater scrubber, closed loop freshwater scrubber, hybrid scrubber and dry scrubber system. The life cycle cost analysis results are presented by the net present value (NPV) and the return of investment (ROI) time. Under the assumption of current HFO and MGO price, a positive NPV can be found for every scrubber types subjected to four vessel types with the ROI time ranging from 1to 5 years depending on the operation profile in ECA-SOx.
Choose an application
life cycle thinking --- life cycle assessment --- Life cycle, Human --- Life cycle costing --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial --- Human life cycle --- Life stages, Human --- Lifecycle, Human --- Human growth --- Life cycles (Biology) --- Maturation (Psychology) --- Developmental psychology --- Life cycle, Human. --- Life cycle costing.
Choose an application
Sustainable agriculture. --- Sustainable development --- Life cycle costing --- Mathematical models. --- Environmental aspects. --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial --- Low-input agriculture --- Low-input sustainable agriculture --- Lower input agriculture --- Resource-efficient agriculture --- Sustainable farming --- Agriculture --- Alternative agriculture
Choose an application
Life cycle costing. --- Sustainable development. --- Decision making. --- Deciding --- Decision (Psychology) --- Decision analysis --- Decision processes --- Making decisions --- Management --- Management decisions --- Choice (Psychology) --- Problem solving --- Development, Sustainable --- Ecologically sustainable development --- Economic development, Sustainable --- Economic sustainability --- ESD (Ecologically sustainable development) --- Smart growth --- Sustainable development --- Sustainable economic development --- Economic development --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Costs, Industrial --- Decision making --- Environmental aspects
Choose an application
"The key areas of life cycle cost analysis (LCCA) and whole life costing (WLC) are exemplified in this volume with accounts of their application to housing stock, a community hydroelectric power system, various aspects of highway infrastructure, and corrosion protective coatings. Sustainable construction and design requires more than compliance with safety requirements and economic constraints, there is also the impact on the environment, the surrounding population and users of the infrastructure. This requires a multidimensional perspective of sustainability to be considered in life cycle costing (LCC) combining current design criteria with these other aspects. It has become increasingly important to understand the full costs of civil engineering infrastructure, and the main sources of cost, along the whole supply chain and to identify cost reduction opportunities. The conventional procurement approach without the integration of probabilistic life-cycle cost modelling induces substantial long term maintenance costs. Once deterioration and life-cycle cost models have been established, appropriate partnership procurement strategies, associated financing methods and determination of the project period can be developed. LCC includes the cost of planning, design, acquisition, operation, maintenance and disposal of buildings and other construction assets, while WLC additionally includes incomes and other costs such as non-construction costs and externalities. In whole life costing, social, environmental or business costs or benefits are considered as externalities and care must be taken not to double-count the impacts when WLC is used together with LCCA. The international examples included here illustrate practically the methodology of life cycle costing and the application of life-cycle cost analysis to identify the most appropriate method for assessing the relative merits of competing project implementation alternatives. As such it will provide a valuable tool for practising engineers, researchers and advanced students in civil and structural engineering."--Publisher's website
Life cycle costing. --- Engineering economy. --- Cost control. --- Construction industry --- Product life cycle. --- Life cycle, Product --- Manufactures --- Marketing --- Product management --- Containment, Cost --- Cost containment --- Cost reduction --- Costs, Industrial --- Economy, Engineering --- Engineering economics --- Industrial engineering --- Costing, Life cycle --- L.C.C. (Life cycle costing) --- LCC (Life cycle costing) --- Life cycle cost --- Life cycle cost analysis --- Terotechnology --- Cost effectiveness. --- Life cycle --- Cost Control --- Coût du cycle de vie. --- Coût --- Produits commerciaux --- Contrôle. --- Cycle de vie.
Listing 1 - 10 of 38 | << page >> |
Sort by
|