Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Partial differential equations --- 51 <082.1> --- Mathematics--Series --- Geometry, Differential. --- Laplacian operator. --- Level set methods. --- Ensembles de niveaux, Méthodes d'. --- Laplacien. --- Géométrie différentielle. --- Geometry, Differential --- Laplacian operator --- Level set methods --- Level sets (Mathematics) --- Osher-Sethian level set methods --- Sethian level set methods, Osher --- -Interfaces (Physical sciences) --- Operator, Laplacian --- Differential equations, Partial --- Differential geometry --- Mathematics
Choose an application
514.8 --- 681.3*G18 --- 681.3 *G18 Partial differential equations: difference methods elliptic equations finite element methods hyperbolic equations method of lines parabolic equations (Numerical analysis) --- Partial differential equations: difference methods elliptic equations finite element methods hyperbolic equations method of lines parabolic equations (Numerical analysis) --- 514.8 Geometric study of objects of mechanics and physics --- Geometric study of objects of mechanics and physics --- Level set methods --- Level set methods. --- 681.3 *G18 Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- Level sets (Mathematics) --- Osher-Sethian level set methods --- Sethian level set methods, Osher --- -Interfaces (Physical sciences) --- Mathematics --- 681.3 *G18 --- Representation des surfaces
Choose an application
Image segmentation consists of dividing an image domain into disjoint regions according to a characterization of the image within or in-between the regions. Therefore, segmenting an image is to divide its domain into relevant components. The efficient solution of the key problems in image segmentation promises to enable a rich array of useful applications. The current major application areas include robotics, medical image analysis, remote sensing, scene understanding, and image database retrieval. The subject of this book is image segmentation by variational methods with a focus on formulations which use closed regular plane curves to define the segmentation regions and on a level set implementation of the corresponding active curve evolution algorithms. Each method is developed from an objective functional which embeds constraints on both the image domain partition of the segmentation and the image data within or in-between the partition regions. The necessary conditions to optimize the objective functional are then derived and solved numerically. The book covers, within the active curve and level set formalism, the basic two-region segmentation methods, multiregion extensions, region merging, image modeling, and motion based segmentation. To treat various important classes of images, modeling investigates several parametric distributions such as the Gaussian, Gamma, Weibull, and Wishart. It also investigates non-parametric models. In motion segmentation, both optical flow and the movement of real three-dimensional objects are studied.
Geometric measure theory. --- Image processing -- Digital techniques -- Mathematics. --- Image segmentation --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Electrical Engineering --- Telecommunications --- Applied Physics --- Mathematics --- Image processing --- Level set methods. --- Digital techniques. --- Mathematics. --- Level sets (Mathematics) --- Osher-Sethian level set methods --- Sethian level set methods, Osher --- -Digital image processing --- Engineering. --- Image processing. --- Signal, Image and Speech Processing. --- Image Processing and Computer Vision. --- -Interfaces (Physical sciences) --- Digital image processing --- Digital electronics --- Computer vision. --- Machine vision --- Vision, Computer --- Artificial intelligence --- Pattern recognition systems --- Signal processing. --- Speech processing systems. --- Optical data processing. --- Optical computing --- Visual data processing --- Bionics --- Electronic data processing --- Integrated optics --- Photonics --- Computers --- Computational linguistics --- Electronic systems --- Information theory --- Modulation theory --- Oral communication --- Speech --- Telecommunication --- Singing voice synthesizers --- Pictorial data processing --- Picture processing --- Processing, Image --- Imaging systems --- Optical data processing --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Optical equipment
Choose an application
This book is an introduction to level set methods and dynamic implicit surfaces. These are powerful techniques for analyzing and computing moving fronts in a variety of different settings. While the book gives many examples of the usefulness of the methods for a diverse set of applications, it also gives complete numerical analysis and recipes, which will enable users to quickly apply the techniques to real problems. The book begins with the description of implicit surfaces and their basic properties, and then devises the level set geometry and calculus toolbox, including the construction of signed distance functions. Part II adds dynamics to this static calculus. Topics include the level set equation itself, Hamilton-Jacobi equations, motion of a surface normal to itself, reinitialization to a signed distance function, extrapolation in the normal direction, the particle level set method, and the motion of codimension two (and higher) objects. Part III is concerned with topics taken from the field of image processing and computer vision. These include the restoration of images degraded by noise and blur, image segmentation with active contours (snakes), and reconstruction of surfaces from unorganized data points. Part IV is dedicated to computational physics. It begins with one-phase compressible fluid dynamics, then two-phase compressible flow involving possibly different equations of state, detonation and deflagration waves, and solid/fluid structure interaction. Next it discusses incompressible fluid dynamics, including a computer graphics simulation of smoke; free surface flows, including a computer graphics simulation of water; and fully two-phase incompressible flow. Additional related topics include incompressible flames with applications to computer graphics and coupling a compressible and incompressible fluid. Finally, heat flow and Stefan problems are discussed. A student or researcher working in mathematics, computer graphics, science, or engineering interested in any dynamic moving front, which might change it's topology or develop singularities, will find this book interesting and useful.
Level set methods. --- Implicit functions. --- Fonctions implicites --- Level set methods --- Implicit functions --- 514.8 --- 681.3*G18 --- Level sets (Mathematics) --- Osher-Sethian level set methods --- Sethian level set methods, Osher --- -Interfaces (Physical sciences) --- Functions, Implicit --- Functions of several real variables --- Geometric study of objects of mechanics and physics --- Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- Mathematics --- Physical Sciences & Mathematics --- Mathematics - General --- Physics --- Atomic Physics --- Mathematical Theory --- 681.3 *G18 Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- 514.8 Geometric study of objects of mechanics and physics --- -Functions, Implicit --- Mathematics. --- Image processing. --- Computer mathematics. --- Continuum physics. --- Mechanics. --- Mechanics, Applied. --- Computational Mathematics and Numerical Analysis. --- Classical Continuum Physics. --- Image Processing and Computer Vision. --- Theoretical and Applied Mechanics. --- 681.3 *G18 --- Computer science --- Computer vision. --- Mechanics, applied. --- Classical and Continuum Physics. --- Optical data processing. --- Applied mechanics --- Engineering, Mechanical --- Engineering mathematics --- Classical mechanics --- Newtonian mechanics --- Dynamics --- Quantum theory --- Optical computing --- Visual data processing --- Bionics --- Electronic data processing --- Integrated optics --- Photonics --- Computers --- Classical field theory --- Continuum physics --- Continuum mechanics --- Computer mathematics --- Optical equipment --- Méthodes d'ensembles de niveaux --- Representation des surfaces --- Méthodes d'ensembles de niveaux --- Field theory (Physics)
Choose an application
This book offers a collection of six papers addressing problems associated with the computational modeling of multi-field problems. Some of the proposed contributions present novel computational techniques, while other topics focus on applying state-of-the-art techniques in order to solve coupled problems in various areas including the prediction of material failure during the lithiation process, which is of major importance in batteries; efficient models for flexoelectricity, which require higher-order continuity; the prediction of composite pipes under thermomechanical conditions; material failure in rock; and computational materials design. The latter exploits nano-scale modeling in order to predict various material properties for two-dimensional materials with applications in, for example, semiconductors. In summary, this book provides a good overview of the computational modeling of different multi-field problems.
temperature variation --- h-BN and Graphene sheets --- molecular dynamics simulation --- thermal conductance --- mechanical --- patch repair --- first-principles --- finite element method --- Von Mises stress --- composite --- thermal --- electrofusion socket joints --- two-dimensional semiconductor --- buried gas distribution pipes --- level set technique --- lithium-ion battery --- phase field approach to fracture --- meshless method --- rock mechanics --- fracture of geo-materials --- flexoelectricity --- pressure gradient effect --- medium density polyethylene (MDPE) --- high density polyethylene (HDPE) --- size effect --- fracture analysis --- interface modeling --- cohesive zone model --- thermal conductivity --- peridynamics
Choose an application
This monograph is devoted to the study of Eulerian models for fluid-structure interaction from the original point of view of level set methods. In the last 15 years, Eulerian models have become popular tools for studying fluid-structure interaction problems. One major advantage compared to more conventional methods such as ALE methods is that they allow the use of a single grid and a single discretization method for the different media. Level set methods in addition provide a general framework to follow the fluid-solid interfaces, to represent the elastic stresses of solids, and to model the contact forces between solids. This book offers a combination of mathematical modeling, aspects of numerical analysis, elementary codes and numerical illustrations, providing the reader with insights into the applications and performance of these models. Assuming background at the level of a Master’s degree, Level Set Methods for Fluid-Structure Interaction provides researchers in the fields of numerical analysis of PDEs, theoretical and computational mechanics with a basic reference on the topic. Its pedagogical style and organization make it particularly suitable for graduate students and young researchers.
Fluid-structure interaction. --- Level set methods. --- Level sets (Mathematics) --- Osher-Sethian level set methods --- Sethian level set methods, Osher --- -Interfaces (Physical sciences) --- Structure-fluid interaction --- Fluid dynamics --- Structural dynamics --- Mathematics --- Models matemàtics --- Mecànica dels medis continus --- Anàlisi numèrica --- Mètodes numèrics --- Algorismes --- Anàlisi matemàtica --- Teoria de l'aproximació --- Anàlisi d'error (Matemàtica) --- Anàlisi d'intervals (Matemàtica) --- Càlculs numèrics --- Equacions diferencials estocàstiques --- Integració numèrica --- Interpolació (Matemàtica) --- Mètodes de Galerkin --- Mètode de Montecarlo --- Mètode dels elements finits --- Mètodes iteratius (Matemàtica) --- Nomografia (Matemàtica) --- Rutes aleatòries (Matemàtica) --- Solucions numèriques --- Mecànica contínua --- Mecànica del continu --- Elasticitat --- Mecànica analítica --- Acústica --- Mecànica de fluids --- Sòlids elàstics --- Termoelasticitat --- Viscoelasticitat --- Teoria de camps (Física) --- Models (Matemàtica) --- Models experimentals --- Models teòrics --- Mètodes de simulació --- Anàlisi de sistemes --- Modelització multiescala --- Models economètrics --- Models lineals (Estadística) --- Models multinivell (Estadística) --- Models no lineals (Estadística) --- Programació (Ordinadors) --- Simulació per ordinador --- Teoria de màquines --- Models biològics --- Mathematical models. --- Continuum mechanics. --- Numerical analysis. --- Mathematical Modeling and Industrial Mathematics. --- Continuum Mechanics. --- Numerical Analysis. --- Computational Science and Engineering. --- Data processing. --- Mathematical analysis --- Mechanics of continua --- Elasticity --- Mechanics, Analytic --- Field theory (Physics) --- Models, Mathematical --- Simulation methods --- Anàlisi numèrica.
Choose an application
What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.
MOSFET --- n/a --- total ionizing dose (TID) --- low power consumption --- process simulation --- two-dimensional material --- negative-capacitance --- power consumption --- technology computer aided design (TCAD) --- thin-film transistors (TFTs) --- band-to-band tunneling (BTBT) --- nanowires --- inversion channel --- metal oxide semiconductor field effect transistor (MOSFET) --- spike-timing-dependent plasticity (STDP) --- field effect transistor --- segregation --- systematic variations --- Sentaurus TCAD --- indium selenide --- nanosheets --- technology computer-aided design (TCAD) --- high-? dielectric --- subthreshold bias range --- statistical variations --- fin field effect transistor (FinFET) --- compact models --- non-equilibrium Green’s function --- etching simulation --- highly miniaturized transistor structure --- compact model --- silicon nanowire --- surface potential --- Silicon-Germanium source/drain (SiGe S/D) --- nanowire --- plasma-aided molecular beam epitaxy (MBE) --- phonon scattering --- mobility --- silicon-on-insulator --- drain engineered --- device simulation --- variability --- semi-floating gate --- synaptic transistor --- neuromorphic system --- theoretical model --- CMOS --- ferroelectrics --- tunnel field-effect transistor (TFET) --- SiGe --- metal gate granularity --- buried channel --- ON-state --- bulk NMOS devices --- ambipolar --- piezoelectrics --- tunnel field effect transistor (TFET) --- FinFETs --- polarization --- field-effect transistor --- line edge roughness --- random discrete dopants --- radiation hardened by design (RHBD) --- low energy --- flux calculation --- doping incorporation --- low voltage --- topography simulation --- MOS devices --- low-frequency noise --- high-k --- layout --- level set --- process variations --- subthreshold --- metal gate stack --- electrostatic discharge (ESD) --- non-equilibrium Green's function
Choose an application
Due to the ever-expanding applications of micro/nano-electromechanical systems (NEMS/MEMS) as sensors and actuators, interest in their development has rapidly expanded over the past decade. Encompassing various excitation and readout schemes, the MEMS/NEMS devices transduce physical parameter changes, such as temperature, mass or stress, caused by changes in desired measurands, to electrical signals that can be further processed. Some common examples of NEMS/MEMS sensors include pressure sensors, accelerometers, magnetic field sensors, microphones, radiation sensors, and particulate matter sensors. Despite a long history of development, fabrication of novel MEMS/NEMS devices still poses unique challenges due to their requirement for a suspended geometry; and many new fabrication techniques have been proposed to overcome these challenges. However, further development of these techniques is still necessary, as newer materials such as compound semiconductors, and 2-dimensional materials are finding their way in various MEMS/NEMS applications, with more complex structures and potentially smaller dimensions.
vibrating ring gyroscope --- n/a --- tunnel magnetoresistive effect --- optical sensor --- micro-NIR spectrometer --- pulse inertia force --- gas sensor --- wet etching --- oil detection --- glass welding --- spring design --- power consumption --- MEMS (micro-electro-mechanical system) --- back cavity --- deflection position detector --- magnetic --- MEMS --- single-layer SiO2 --- frequency tuning --- threshold accuracy --- suspended micro hotplate --- AlGaN/GaN circular HFETs --- quadrature modulation signal --- inertial switch --- nanoparticle sensor --- low noise --- photonic crystal nanobeam cavity --- floating slug --- infrared image --- backstepping approach --- microdroplet --- acceleration switch --- microgyroscope --- temperature uniformity --- methane --- microfluidic --- accelerometer design --- photonic crystal cavity --- anisotropy --- resonant frequency --- dual-mass MEMS gyroscope --- analytical model --- single crystal silicon --- temperature sensor --- micro fluidic --- refractive index sensor --- microwave measurement --- low zero-g offset --- femtosecond laser --- micropellistor --- rapid fabrication --- accelerometer --- tracking performance --- GaN diaphragm --- microactuator --- resistance parameter --- optomechanical sensor --- scanning grating mirror --- GaAs MMIC --- adaptive control --- frequency split --- frequency mismatch --- electrostatic force feedback --- thermoelectric power sensor --- squeeze-film damping --- silicon --- wideband --- Accelerometer readout --- bonding strength --- high temperature pressure sensors --- 3D simulation --- level-set method --- tetramethylammonium hydroxide (TMAH)
Listing 1 - 10 of 13 | << page >> |
Sort by
|