Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- n/a
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
Technology: general issues --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology
Choose an application
Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative solutions and alternatives in biomedical applications and advanced engineering structures for aerospace and automotive industries as well as in sensor and actuation systems, among other sectors. Irrespective of this, designing and engineering using these special smart materials requires a solid background in materials science in order to consolidate their importance in these fields and to broaden their relevance for other new applications. The goal of this Special Issue is to foster the dissemination of some of the latest research devoted to these special materials from different perspectives.
Technology: general issues --- shape memory alloys --- cyclic tests --- fatigue test --- energy dissipation --- earthquake engineering --- NiTiNb --- anisotropy --- texture --- SME --- pipe joints --- NiTi --- selective laser melting --- additive manufacturing --- lattice structure --- EBSD --- superelasticity --- metamagnetic shape memory alloys --- structural defects --- magnetocaloric effect --- mechanical damping --- martensitic transitions --- phonon softening --- resonant ultrasound spectroscopy --- laser-ultrasound --- elastic constants --- high-temperature shape memory alloys --- titanium palladium --- titanium platinum --- multi-component alloys --- medium-entropy alloys --- high-entropy alloys --- laser powder bed fusion --- density control --- structure control --- process simulation --- shape memory alloy --- Fe-Mn-Al-Ni --- cyclic heat treatment --- co-based Heusler alloy --- martensitic transformation --- metamagnetic shape memory alloy --- phase diagram --- magnetic-field-induced transition --- intermetallic --- microstructure --- differential scanning calorimetry --- X-ray diffraction --- mechanical testing --- shape memory alloys --- cyclic tests --- fatigue test --- energy dissipation --- earthquake engineering --- NiTiNb --- anisotropy --- texture --- SME --- pipe joints --- NiTi --- selective laser melting --- additive manufacturing --- lattice structure --- EBSD --- superelasticity --- metamagnetic shape memory alloys --- structural defects --- magnetocaloric effect --- mechanical damping --- martensitic transitions --- phonon softening --- resonant ultrasound spectroscopy --- laser-ultrasound --- elastic constants --- high-temperature shape memory alloys --- titanium palladium --- titanium platinum --- multi-component alloys --- medium-entropy alloys --- high-entropy alloys --- laser powder bed fusion --- density control --- structure control --- process simulation --- shape memory alloy --- Fe-Mn-Al-Ni --- cyclic heat treatment --- co-based Heusler alloy --- martensitic transformation --- metamagnetic shape memory alloy --- phase diagram --- magnetic-field-induced transition --- intermetallic --- microstructure --- differential scanning calorimetry --- X-ray diffraction --- mechanical testing
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
Technology: general issues --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- n/a
Choose an application
Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative solutions and alternatives in biomedical applications and advanced engineering structures for aerospace and automotive industries as well as in sensor and actuation systems, among other sectors. Irrespective of this, designing and engineering using these special smart materials requires a solid background in materials science in order to consolidate their importance in these fields and to broaden their relevance for other new applications. The goal of this Special Issue is to foster the dissemination of some of the latest research devoted to these special materials from different perspectives.
Technology: general issues --- shape memory alloys --- cyclic tests --- fatigue test --- energy dissipation --- earthquake engineering --- NiTiNb --- anisotropy --- texture --- SME --- pipe joints --- NiTi --- selective laser melting --- additive manufacturing --- lattice structure --- EBSD --- superelasticity --- metamagnetic shape memory alloys --- structural defects --- magnetocaloric effect --- mechanical damping --- martensitic transitions --- phonon softening --- resonant ultrasound spectroscopy --- laser-ultrasound --- elastic constants --- high-temperature shape memory alloys --- titanium palladium --- titanium platinum --- multi-component alloys --- medium-entropy alloys --- high-entropy alloys --- laser powder bed fusion --- density control --- structure control --- process simulation --- shape memory alloy --- Fe-Mn-Al-Ni --- cyclic heat treatment --- co-based Heusler alloy --- martensitic transformation --- metamagnetic shape memory alloy --- phase diagram --- magnetic-field-induced transition --- intermetallic --- microstructure --- differential scanning calorimetry --- X-ray diffraction --- mechanical testing --- n/a
Choose an application
Developments in the science and technology of textiles are not only limited to apparel and fashion. Certainly, there are research efforts aimed at improving the construction and processing of textiles for clothing—such as studies on cleaner production to reduce environmental impact, increasing the utilization of fibers and process chemicals from renewable resources, and on the recycling of materials from post-consumer waste apparel back into the manufacturing of new clothing articles. In addition, technological concepts developed for the creation of clothing over the centuries are now being investigated for use in a diverse array of fields—such as in the manufacture of engineering composites, personal protective equipment, and medicine. Further, developments in other fields—such as electronics, nanotechnology, and information and communication technologies—are being investigated for their incorporation into apparel and clothing to create “smart textiles”. The aim of this Special Issue is to put together a collection of scientific reports on such efforts to highlight the range of scientific and technological issues that are being targeted and the ingenuity of the methodologies employed to find answers. It is hoped that readers of this issue will come away with an appreciation of the research being conducted in this area, and perhaps gain inspiration for their own scientific endeavors.
History of engineering & technology --- Polyimide fiber --- thermal stability --- swelling agent --- dyeability --- carbon textile reinforced mortar --- uniaxial tensile tests --- debonding failure --- steel fibers --- prestress --- multi-cracking pattern --- polyacrylonitrile --- polyaniline --- conductive fibers --- flax fiber-reinforced composite --- strain rate effect --- Johnson–Cook model --- lattice structure --- failure mechanism --- textiles --- composite preforming --- mechanical properties --- shear behavior --- surface analysis --- picture frame test --- kinematic draping simulation --- textile --- PET --- biomaterials --- iPS-cells --- cardiomyocytes --- maturation --- gene expression --- electronic textiles --- AMOLED --- OTFTs --- OLEDs --- textile displays --- organic thin film --- graft polymerization --- surface modification --- hydrogels --- gamma irradiation --- silver nanoparticles --- antibacterial activity --- temperature sensor --- conductivity --- coatings --- deposition --- thermocouple --- material characterization --- smart clothing --- temperature sensing --- wearable technology --- nanomaterials --- environmental impacts --- toxicity --- health and safety --- conductive fibres --- cellulose fibres --- pressure sensor --- smart textiles --- viscose fibres --- carbon black --- biocementation --- MICP --- jute fibres --- unconfined compressive strength --- urea hydrolysis --- sustainable geotechnics --- self-healing --- n/a --- Johnson-Cook model
Choose an application
Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative solutions and alternatives in biomedical applications and advanced engineering structures for aerospace and automotive industries as well as in sensor and actuation systems, among other sectors. Irrespective of this, designing and engineering using these special smart materials requires a solid background in materials science in order to consolidate their importance in these fields and to broaden their relevance for other new applications. The goal of this Special Issue is to foster the dissemination of some of the latest research devoted to these special materials from different perspectives.
shape memory alloys --- cyclic tests --- fatigue test --- energy dissipation --- earthquake engineering --- NiTiNb --- anisotropy --- texture --- SME --- pipe joints --- NiTi --- selective laser melting --- additive manufacturing --- lattice structure --- EBSD --- superelasticity --- metamagnetic shape memory alloys --- structural defects --- magnetocaloric effect --- mechanical damping --- martensitic transitions --- phonon softening --- resonant ultrasound spectroscopy --- laser-ultrasound --- elastic constants --- high-temperature shape memory alloys --- titanium palladium --- titanium platinum --- multi-component alloys --- medium-entropy alloys --- high-entropy alloys --- laser powder bed fusion --- density control --- structure control --- process simulation --- shape memory alloy --- Fe-Mn-Al-Ni --- cyclic heat treatment --- co-based Heusler alloy --- martensitic transformation --- metamagnetic shape memory alloy --- phase diagram --- magnetic-field-induced transition --- intermetallic --- microstructure --- differential scanning calorimetry --- X-ray diffraction --- mechanical testing --- n/a
Choose an application
Developments in the science and technology of textiles are not only limited to apparel and fashion. Certainly, there are research efforts aimed at improving the construction and processing of textiles for clothing—such as studies on cleaner production to reduce environmental impact, increasing the utilization of fibers and process chemicals from renewable resources, and on the recycling of materials from post-consumer waste apparel back into the manufacturing of new clothing articles. In addition, technological concepts developed for the creation of clothing over the centuries are now being investigated for use in a diverse array of fields—such as in the manufacture of engineering composites, personal protective equipment, and medicine. Further, developments in other fields—such as electronics, nanotechnology, and information and communication technologies—are being investigated for their incorporation into apparel and clothing to create “smart textiles”. The aim of this Special Issue is to put together a collection of scientific reports on such efforts to highlight the range of scientific and technological issues that are being targeted and the ingenuity of the methodologies employed to find answers. It is hoped that readers of this issue will come away with an appreciation of the research being conducted in this area, and perhaps gain inspiration for their own scientific endeavors.
Polyimide fiber --- thermal stability --- swelling agent --- dyeability --- carbon textile reinforced mortar --- uniaxial tensile tests --- debonding failure --- steel fibers --- prestress --- multi-cracking pattern --- polyacrylonitrile --- polyaniline --- conductive fibers --- flax fiber-reinforced composite --- strain rate effect --- Johnson–Cook model --- lattice structure --- failure mechanism --- textiles --- composite preforming --- mechanical properties --- shear behavior --- surface analysis --- picture frame test --- kinematic draping simulation --- textile --- PET --- biomaterials --- iPS-cells --- cardiomyocytes --- maturation --- gene expression --- electronic textiles --- AMOLED --- OTFTs --- OLEDs --- textile displays --- organic thin film --- graft polymerization --- surface modification --- hydrogels --- gamma irradiation --- silver nanoparticles --- antibacterial activity --- temperature sensor --- conductivity --- coatings --- deposition --- thermocouple --- material characterization --- smart clothing --- temperature sensing --- wearable technology --- nanomaterials --- environmental impacts --- toxicity --- health and safety --- conductive fibres --- cellulose fibres --- pressure sensor --- smart textiles --- viscose fibres --- carbon black --- biocementation --- MICP --- jute fibres --- unconfined compressive strength --- urea hydrolysis --- sustainable geotechnics --- self-healing --- n/a --- Johnson-Cook model
Choose an application
Developments in the science and technology of textiles are not only limited to apparel and fashion. Certainly, there are research efforts aimed at improving the construction and processing of textiles for clothing—such as studies on cleaner production to reduce environmental impact, increasing the utilization of fibers and process chemicals from renewable resources, and on the recycling of materials from post-consumer waste apparel back into the manufacturing of new clothing articles. In addition, technological concepts developed for the creation of clothing over the centuries are now being investigated for use in a diverse array of fields—such as in the manufacture of engineering composites, personal protective equipment, and medicine. Further, developments in other fields—such as electronics, nanotechnology, and information and communication technologies—are being investigated for their incorporation into apparel and clothing to create “smart textiles”. The aim of this Special Issue is to put together a collection of scientific reports on such efforts to highlight the range of scientific and technological issues that are being targeted and the ingenuity of the methodologies employed to find answers. It is hoped that readers of this issue will come away with an appreciation of the research being conducted in this area, and perhaps gain inspiration for their own scientific endeavors.
History of engineering & technology --- Polyimide fiber --- thermal stability --- swelling agent --- dyeability --- carbon textile reinforced mortar --- uniaxial tensile tests --- debonding failure --- steel fibers --- prestress --- multi-cracking pattern --- polyacrylonitrile --- polyaniline --- conductive fibers --- flax fiber-reinforced composite --- strain rate effect --- Johnson-Cook model --- lattice structure --- failure mechanism --- textiles --- composite preforming --- mechanical properties --- shear behavior --- surface analysis --- picture frame test --- kinematic draping simulation --- textile --- PET --- biomaterials --- iPS-cells --- cardiomyocytes --- maturation --- gene expression --- electronic textiles --- AMOLED --- OTFTs --- OLEDs --- textile displays --- organic thin film --- graft polymerization --- surface modification --- hydrogels --- gamma irradiation --- silver nanoparticles --- antibacterial activity --- temperature sensor --- conductivity --- coatings --- deposition --- thermocouple --- material characterization --- smart clothing --- temperature sensing --- wearable technology --- nanomaterials --- environmental impacts --- toxicity --- health and safety --- conductive fibres --- cellulose fibres --- pressure sensor --- smart textiles --- viscose fibres --- carbon black --- biocementation --- MICP --- jute fibres --- unconfined compressive strength --- urea hydrolysis --- sustainable geotechnics --- self-healing --- Polyimide fiber --- thermal stability --- swelling agent --- dyeability --- carbon textile reinforced mortar --- uniaxial tensile tests --- debonding failure --- steel fibers --- prestress --- multi-cracking pattern --- polyacrylonitrile --- polyaniline --- conductive fibers --- flax fiber-reinforced composite --- strain rate effect --- Johnson-Cook model --- lattice structure --- failure mechanism --- textiles --- composite preforming --- mechanical properties --- shear behavior --- surface analysis --- picture frame test --- kinematic draping simulation --- textile --- PET --- biomaterials --- iPS-cells --- cardiomyocytes --- maturation --- gene expression --- electronic textiles --- AMOLED --- OTFTs --- OLEDs --- textile displays --- organic thin film --- graft polymerization --- surface modification --- hydrogels --- gamma irradiation --- silver nanoparticles --- antibacterial activity --- temperature sensor --- conductivity --- coatings --- deposition --- thermocouple --- material characterization --- smart clothing --- temperature sensing --- wearable technology --- nanomaterials --- environmental impacts --- toxicity --- health and safety --- conductive fibres --- cellulose fibres --- pressure sensor --- smart textiles --- viscose fibres --- carbon black --- biocementation --- MICP --- jute fibres --- unconfined compressive strength --- urea hydrolysis --- sustainable geotechnics --- self-healing
Listing 1 - 9 of 9 |
Sort by
|