Listing 1 - 9 of 9 |
Sort by
|
Choose an application
POLYMERS --- CRYSTAL LATTICE ENERGY --- PROPERTIES --- POLYMERS --- CRYSTAL LATTICE ENERGY --- PROPERTIES
Choose an application
Crystallography --- 548 --- Leptology --- Physical sciences --- Mineralogy --- Crystallography. --- 548 Crystallography --- Crystal defects --- Crystal growth --- Crystal lattice energy --- Crystal structure --- X-ray
Choose an application
Thermodynamics --- Chemistry, Inorganic --- 541.124 --- 546 --- #ABIB:adid --- Inorganic chemistry --- Chemistry --- Inorganic compounds --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Limits of reactions --- Chemistry, Inorganic. --- Thermodynamics. --- Covalent compounds --- Enthalpy --- Free energy --- Gaseous atoms --- Inorganic reactions --- Internal energy --- Ionic crystals --- Ions --- Lattice energy --- Covalent compounds. --- Enthalpy. --- Free energy. --- Gaseous atoms. --- Inorganic reactions. --- Internal energy. --- Ionic crystals. --- Ions. --- Lattice energy. --- 546 Inorganic chemistry --- 541.124 Chemical dynamics in general. Reaction mechanism in general --- 541.124 Limits of reactions --- Chemical dynamics in general. Reaction mechanism in general
Choose an application
Unravelling an intricate network of interatomic interactions and their relations to different behaviors of chemical compounds is key to the successful design of new materials for both existing and novel applications, from medicine to innovative concepts of molecular electronics and spintronics. X-ray crystallography has proven to be very helpful in addressing many important chemical problems in modern materials science and biosciences. Intertwined with computational techniques, it provides insights into the nature of chemical bonding and the physicochemical properties (including optical, magnetic, electrical, mechanical, and others) of crystalline materials, otherwise accessible by experimental techniques that are not so readily available to chemists. In addition to the advanced approaches in charge density analysis made possible by X-ray diffraction, the information collected over the years through this technique (which is easily mined from huge databases) has tremendous use in the design of new materials for medicine, gas storage, and separation applications as well as for electronic devices. This Special Issue contains two reviews and five articles that cover very different aspects of ‘composition–structure’ and ‘structure–property’ relations identified by X-ray diffraction and complementary techniques (from conventional IR and Raman spectroscopies to cutting-edge quantum chemical calculations) and their use in crystal engineering and materials science.
organofluorine compounds --- polymorphism --- QTAIM --- NCI --- quantum chemical calculations --- lattice energy --- intermolecular interactions --- F…F interactions --- boron cages --- dihydrogen bonds --- hirshfeld surface --- cambridge structural database --- crystal structures --- knowledge-based analysis --- structure–property relations --- supramolecular chemistry --- chalcogen bond --- halogen bond --- triiodide anion --- Raman spectroscopy --- thermal analysis --- thiazolo[2,3-b][1,3]thiazinium salts --- RNA structural motifs --- base-base interactions --- classification of base arrangement --- RNA crystallographic structures --- chiral thiophosphorylated thioureas --- chirality control --- nickel(II) complexes --- X-ray single crystal diffraction --- X-ray crystallography --- in situ crystallization --- Hirshfeld surface analyzes --- lattice energies --- packing motifs --- polymorph stability --- n/a --- F...F interactions --- structure-property relations
Choose an application
Unravelling an intricate network of interatomic interactions and their relations to different behaviors of chemical compounds is key to the successful design of new materials for both existing and novel applications, from medicine to innovative concepts of molecular electronics and spintronics. X-ray crystallography has proven to be very helpful in addressing many important chemical problems in modern materials science and biosciences. Intertwined with computational techniques, it provides insights into the nature of chemical bonding and the physicochemical properties (including optical, magnetic, electrical, mechanical, and others) of crystalline materials, otherwise accessible by experimental techniques that are not so readily available to chemists. In addition to the advanced approaches in charge density analysis made possible by X-ray diffraction, the information collected over the years through this technique (which is easily mined from huge databases) has tremendous use in the design of new materials for medicine, gas storage, and separation applications as well as for electronic devices. This Special Issue contains two reviews and five articles that cover very different aspects of ‘composition–structure’ and ‘structure–property’ relations identified by X-ray diffraction and complementary techniques (from conventional IR and Raman spectroscopies to cutting-edge quantum chemical calculations) and their use in crystal engineering and materials science.
Research & information: general --- organofluorine compounds --- polymorphism --- QTAIM --- NCI --- quantum chemical calculations --- lattice energy --- intermolecular interactions --- F...F interactions --- boron cages --- dihydrogen bonds --- hirshfeld surface --- cambridge structural database --- crystal structures --- knowledge-based analysis --- structure-property relations --- supramolecular chemistry --- chalcogen bond --- halogen bond --- triiodide anion --- Raman spectroscopy --- thermal analysis --- thiazolo[2,3-b][1,3]thiazinium salts --- RNA structural motifs --- base-base interactions --- classification of base arrangement --- RNA crystallographic structures --- chiral thiophosphorylated thioureas --- chirality control --- nickel(II) complexes --- X-ray single crystal diffraction --- X-ray crystallography --- in situ crystallization --- Hirshfeld surface analyzes --- lattice energies --- packing motifs --- polymorph stability --- organofluorine compounds --- polymorphism --- QTAIM --- NCI --- quantum chemical calculations --- lattice energy --- intermolecular interactions --- F...F interactions --- boron cages --- dihydrogen bonds --- hirshfeld surface --- cambridge structural database --- crystal structures --- knowledge-based analysis --- structure-property relations --- supramolecular chemistry --- chalcogen bond --- halogen bond --- triiodide anion --- Raman spectroscopy --- thermal analysis --- thiazolo[2,3-b][1,3]thiazinium salts --- RNA structural motifs --- base-base interactions --- classification of base arrangement --- RNA crystallographic structures --- chiral thiophosphorylated thioureas --- chirality control --- nickel(II) complexes --- X-ray single crystal diffraction --- X-ray crystallography --- in situ crystallization --- Hirshfeld surface analyzes --- lattice energies --- packing motifs --- polymorph stability
Choose an application
Noncovalent interactions are the bridge between ideal gas abstraction and the real world. For a long time, they were covered by two terms: van der Waals interactions and hydrogen bonding. Both experimental and quantum chemical studies have contributed to our understanding of the nature of these interactions. In the last decade, great progress has been made in identifying, quantifying, and visualizing noncovalent interactions. New types of interactions have been classified—their energetic and spatial properties have been tabulated. In the past, most studies were limited to analyzing the single strongest interaction in the molecular system under consideration, which is responsible for the most important structural properties of the system. Despite this limitation, such an approach often results in satisfactory approximations of experimental data. However, this requires knowledge of the structure of the molecular system and the absence of other competing interactions. The current challenge is to go beyond this limitation. This Special Issue collects ideas on how to study the interplay of noncovalent interactions in complex molecular systems including the effects of cooperation and anti-cooperation, solvation, reaction field, steric hindrance, intermolecular dynamics, and other weak but numerous impacts on molecular conformation, chemical reactivity, and condensed matter structure.
Research & information: general --- solvent effect --- hydrogen bond --- NMR --- condensed matter --- polarizable continuum model --- reaction field --- external electric field --- proton transfer --- halogen bond --- phosphine oxide --- 31P NMR spectroscopy --- IR spectroscopy --- non-covalent interactions --- spectral correlations --- Reaction mechanism --- first-principle calculation --- Bader charge analysis --- activation energy --- transition state structure --- conventional and non-conventional H-bonds --- empirical Grimme corrections --- lattice energy of organic salts --- computation of low-frequency Raman spectra --- confinement --- solid-state NMR --- molecular dynamics --- interfaces and surfaces --- substituent effect --- aromaticity --- adenine --- Lewis acid–Lewis base interactions --- tetrel bond --- pnicogen bond --- triel bond --- electron charge shifts --- proton dynamics --- carboxyl group --- CPMD --- DFT --- IINS --- IR --- Raman --- crystal engineering --- halogen bonding --- azo dyes --- QTAIM --- dispersion --- ketone–alcohol complexes --- density functional theory --- hydrogen bonds --- molecular recognition --- vibrational spectroscopy --- gas phase --- benchmark --- pinacolone --- deuteration --- heavy drugs --- histamine receptor --- hydrogen bonding --- receptor activation --- n/a --- Lewis acid-Lewis base interactions --- ketone-alcohol complexes
Choose an application
Noncovalent interactions are the bridge between ideal gas abstraction and the real world. For a long time, they were covered by two terms: van der Waals interactions and hydrogen bonding. Both experimental and quantum chemical studies have contributed to our understanding of the nature of these interactions. In the last decade, great progress has been made in identifying, quantifying, and visualizing noncovalent interactions. New types of interactions have been classified—their energetic and spatial properties have been tabulated. In the past, most studies were limited to analyzing the single strongest interaction in the molecular system under consideration, which is responsible for the most important structural properties of the system. Despite this limitation, such an approach often results in satisfactory approximations of experimental data. However, this requires knowledge of the structure of the molecular system and the absence of other competing interactions. The current challenge is to go beyond this limitation. This Special Issue collects ideas on how to study the interplay of noncovalent interactions in complex molecular systems including the effects of cooperation and anti-cooperation, solvation, reaction field, steric hindrance, intermolecular dynamics, and other weak but numerous impacts on molecular conformation, chemical reactivity, and condensed matter structure.
solvent effect --- hydrogen bond --- NMR --- condensed matter --- polarizable continuum model --- reaction field --- external electric field --- proton transfer --- halogen bond --- phosphine oxide --- 31P NMR spectroscopy --- IR spectroscopy --- non-covalent interactions --- spectral correlations --- Reaction mechanism --- first-principle calculation --- Bader charge analysis --- activation energy --- transition state structure --- conventional and non-conventional H-bonds --- empirical Grimme corrections --- lattice energy of organic salts --- computation of low-frequency Raman spectra --- confinement --- solid-state NMR --- molecular dynamics --- interfaces and surfaces --- substituent effect --- aromaticity --- adenine --- Lewis acid–Lewis base interactions --- tetrel bond --- pnicogen bond --- triel bond --- electron charge shifts --- proton dynamics --- carboxyl group --- CPMD --- DFT --- IINS --- IR --- Raman --- crystal engineering --- halogen bonding --- azo dyes --- QTAIM --- dispersion --- ketone–alcohol complexes --- density functional theory --- hydrogen bonds --- molecular recognition --- vibrational spectroscopy --- gas phase --- benchmark --- pinacolone --- deuteration --- heavy drugs --- histamine receptor --- hydrogen bonding --- receptor activation --- n/a --- Lewis acid-Lewis base interactions --- ketone-alcohol complexes
Choose an application
Noncovalent interactions are the bridge between ideal gas abstraction and the real world. For a long time, they were covered by two terms: van der Waals interactions and hydrogen bonding. Both experimental and quantum chemical studies have contributed to our understanding of the nature of these interactions. In the last decade, great progress has been made in identifying, quantifying, and visualizing noncovalent interactions. New types of interactions have been classified—their energetic and spatial properties have been tabulated. In the past, most studies were limited to analyzing the single strongest interaction in the molecular system under consideration, which is responsible for the most important structural properties of the system. Despite this limitation, such an approach often results in satisfactory approximations of experimental data. However, this requires knowledge of the structure of the molecular system and the absence of other competing interactions. The current challenge is to go beyond this limitation. This Special Issue collects ideas on how to study the interplay of noncovalent interactions in complex molecular systems including the effects of cooperation and anti-cooperation, solvation, reaction field, steric hindrance, intermolecular dynamics, and other weak but numerous impacts on molecular conformation, chemical reactivity, and condensed matter structure.
Research & information: general --- solvent effect --- hydrogen bond --- NMR --- condensed matter --- polarizable continuum model --- reaction field --- external electric field --- proton transfer --- halogen bond --- phosphine oxide --- 31P NMR spectroscopy --- IR spectroscopy --- non-covalent interactions --- spectral correlations --- Reaction mechanism --- first-principle calculation --- Bader charge analysis --- activation energy --- transition state structure --- conventional and non-conventional H-bonds --- empirical Grimme corrections --- lattice energy of organic salts --- computation of low-frequency Raman spectra --- confinement --- solid-state NMR --- molecular dynamics --- interfaces and surfaces --- substituent effect --- aromaticity --- adenine --- Lewis acid-Lewis base interactions --- tetrel bond --- pnicogen bond --- triel bond --- electron charge shifts --- proton dynamics --- carboxyl group --- CPMD --- DFT --- IINS --- IR --- Raman --- crystal engineering --- halogen bonding --- azo dyes --- QTAIM --- dispersion --- ketone-alcohol complexes --- density functional theory --- hydrogen bonds --- molecular recognition --- vibrational spectroscopy --- gas phase --- benchmark --- pinacolone --- deuteration --- heavy drugs --- histamine receptor --- hydrogen bonding --- receptor activation --- solvent effect --- hydrogen bond --- NMR --- condensed matter --- polarizable continuum model --- reaction field --- external electric field --- proton transfer --- halogen bond --- phosphine oxide --- 31P NMR spectroscopy --- IR spectroscopy --- non-covalent interactions --- spectral correlations --- Reaction mechanism --- first-principle calculation --- Bader charge analysis --- activation energy --- transition state structure --- conventional and non-conventional H-bonds --- empirical Grimme corrections --- lattice energy of organic salts --- computation of low-frequency Raman spectra --- confinement --- solid-state NMR --- molecular dynamics --- interfaces and surfaces --- substituent effect --- aromaticity --- adenine --- Lewis acid-Lewis base interactions --- tetrel bond --- pnicogen bond --- triel bond --- electron charge shifts --- proton dynamics --- carboxyl group --- CPMD --- DFT --- IINS --- IR --- Raman --- crystal engineering --- halogen bonding --- azo dyes --- QTAIM --- dispersion --- ketone-alcohol complexes --- density functional theory --- hydrogen bonds --- molecular recognition --- vibrational spectroscopy --- gas phase --- benchmark --- pinacolone --- deuteration --- heavy drugs --- histamine receptor --- hydrogen bonding --- receptor activation
Choose an application
The crystal chemistry of spin crossover (SCO) behavior in coordination compounds can potentially be in association with smart materials—promising materials for applications as components of memory devices, displays, sensors and mechanical devices and, especially, actuators, such as artificial muscles. This Special Issue is devoted to various aspects of SCO and related research, comprising 18 interesting original papers on valuable and important SCO topics. Significant and fundamental scientific attention has been focused on the SCO phenomena in a wide research range of fields of fundamental chemical and physical and related sciences, containing the interdisciplinary regions of chemical and physical sciences related to the SCO phenomena. Coordination materials with bistable systems between the LS and the HS states are usually triggered by external stimuli, such as temperature, light, pressure, guest molecule inclusion, soft X-ray, and nuclear decay. Since the first Hofmann-like spin crossover (SCO) behavior in {Fe(py)2[Ni(CN)4]}n (py = pyridine) was demonstrated, this crystal chemistry motif has been frequently used to design Fe(II) SCO materials to enable determination of the correlations between structural features and magnetic properties.
n/a --- hexadentate ligand --- X-ray diffraction --- structural disorder --- lattice energy --- 2-bis(4-pyridyl)ethane --- thermal hysteresis --- optical conductivity spectrum --- spin-state crossover --- solvate --- single crystal --- spin-crossover transition --- spin-crossover --- cobalt oxide --- amorphous --- metal dithiolene complexes --- qsal ligand --- impurity effect --- 3-triazole --- intermolecular interactions --- spin crossover --- hydrogen bonding --- 1 --- 2 --- optical microscopy --- supramolecular coordination polymer --- paramagnetic ligand --- magnetic susceptibility --- high spin --- [Fe(III)(3-OMesal2-trien)]+ --- aminoxyl --- cobalt(II) ion --- mosaicity --- Fe(III) coordination complexes --- nitroxides --- C–H···? interactions --- Fe(II) --- dithiooxalato ligand --- dinuclear triple helicate --- coordination polymers --- magnetization --- spiral structure --- magnetostructural correlations --- charge-transfer phase transition --- structure phase transition --- magnetic properties --- spin polaron --- substitution of 3d transition metal ion --- iron(II) complexes --- X-ray absorption spectroscopy --- coordination complexes --- crystal engineering --- fatigability --- soft X-ray induced excited spin state trapping --- spin transition --- dipyridyl-N-alkylamine ligands --- coordination polymer --- iron (II) --- iron mixed-valence complex --- chiral propeller structure --- spin cross-over (SCO) --- EPR spectroscopy --- Cu(II) complexes --- solvent effects --- ferromagnetism --- SQUID --- LIESST effect --- low spin (LS) --- 57Fe Mössbauer spectroscopy --- dielectric response --- iron(II) --- hetero metal complex --- atropisomerism --- switch --- Schiff base --- counter-anion --- DFT calculation --- Fe(III) complex --- Fe(II) complex --- high spin (HS) --- reaction diffusion --- thermochromism --- supramolecular isomerism --- phase transition --- magnetic transition --- mononuclear --- [Au(dmit)2]? --- UV-Vis spectroscopy --- phase transitions --- ?-? interactions --- [Au(dddt)2]? --- crystal structure --- linear pentadentate ligand --- ion-pair crystals --- C-H···? interactions --- 57Fe Mössbauer spectroscopy
Listing 1 - 9 of 9 |
Sort by
|