Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (5)

Listing 1 - 5 of 5
Sort by

Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Recovery of Waste Materials: Technological Research and Industrial Scale-Up
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Increases in population, booming economy, rapid urbanization and the rise of living standard have exponentially accelerated waste production. Currently, 2 billion tons per year of municipal solid waste is produced worldwide and about 33% of this amount remains uncollected by different municipalities.. However, the entire waste production process concerns different streams and origins other than municipal solid waste, including industrial, agricultural, construction and demolitions waste; and hazardous, medical and electronic waste. Published papers, as a whole, concern different waste materials such as the recovery of different building materials, the treatment of waste deriving from electrical and electronic equipment, the utilization of stainless-steel slags, agricultural and domestic waste and plastics. In conclusion, the works demonstrate scientific and technological relevance in terms of the topics dealt with, but the problems addressed in this Special Issue proceed beyond the solution that the scientific community is able to propose. In fact, our industrial system, at the end of its cycle of production and consumption, has not developed the capacity to absorb and reuse waste and byproducts. We have not yet managed to adopt a circular model of production capable of preserving resources for present and future generations.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Recovery of Waste Materials: Technological Research and Industrial Scale-Up
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Increases in population, booming economy, rapid urbanization and the rise of living standard have exponentially accelerated waste production. Currently, 2 billion tons per year of municipal solid waste is produced worldwide and about 33% of this amount remains uncollected by different municipalities.. However, the entire waste production process concerns different streams and origins other than municipal solid waste, including industrial, agricultural, construction and demolitions waste; and hazardous, medical and electronic waste. Published papers, as a whole, concern different waste materials such as the recovery of different building materials, the treatment of waste deriving from electrical and electronic equipment, the utilization of stainless-steel slags, agricultural and domestic waste and plastics. In conclusion, the works demonstrate scientific and technological relevance in terms of the topics dealt with, but the problems addressed in this Special Issue proceed beyond the solution that the scientific community is able to propose. In fact, our industrial system, at the end of its cycle of production and consumption, has not developed the capacity to absorb and reuse waste and byproducts. We have not yet managed to adopt a circular model of production capable of preserving resources for present and future generations.

Listing 1 - 5 of 5
Sort by