Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Pulsed laser deposition --- Thin films --- Films, Thin --- Solid film --- Solid state electronics --- Solids --- Surfaces (Technology) --- Coatings --- Thick films --- Deposition, Pulsed laser --- Laser deposition, Pulsed --- Coating processes
Choose an application
Nanostructured materials --- Pulsed laser deposition. --- Zinc oxide thin films. --- Design and construction.
Choose an application
The present study focuses on the wear behavior of a laser cladded 316L + 20% WC. Preliminary microstructural characterization was carried out by means of SEM (morphology) and OM (distribution) in order to evaluate how the reinforcement WC particles are embedded into the steel parent matrix. Furthermore, hardness measurements were performed. A pin-on-disc tribometer test campaign was performed considering two different heights of a thick deposit. These results and post-mortem track analysis lead to a deeper comprehension of the wear behavior of the MMC and its wear sequence was elucidated. In addition, a comparison with the previous studies have been made, assessing the role of the counter body on the wear behavior of this complex MMC.
Choose an application
The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.
Technology: general issues --- pulsed electron deposition --- thin films --- orthopedic applications --- bioactivity --- ceramic coatings --- yttria-stabilized zirconia --- calcium phosphates --- hydroxyapatite --- biomimetic coatings --- antibacterial coatings --- thin film --- RF magnetron sputtering --- pulsed DC --- Silicon --- bio-coatings --- biomimetics --- laser deposition --- PLD --- MAPLE --- tissue engineering --- cancer --- titanium-based carbonitrides --- coating --- corrosion resistance --- X-ray diffraction --- nanoindentation --- cathodic arc deposition --- biological-derived hydroxyapatite coatings --- lithium doping --- food industrial by-products --- in vivo extraction force --- pulsed laser deposition --- 3D printing --- calcium phosphate --- PEEK --- surface modification --- sputtering --- ToFSIMS --- XPS --- implant coating --- bioactive glass --- copper doping --- gallium doping --- mechanical --- cytocompatibility --- antibacterial --- physical vapour deposition --- thin-films --- medical devices --- biomimicry
Choose an application
Despite its limitation in terms of surface covered area, the PLD technique still gathers interest among researchers by offering endless possibilities for tuning thin film composition and enhancing their properties of interest due to: (i) the easiness of a stoichiometric transfer even for very complex target materials, (ii) high adherence of the deposited structures to the substrate, (iii) controlled degree of phase, crystallinity, and thickness of deposited coatings, (iv) versatility of the experimental set-up which allows for simultaneous ablation of multiple targets resulting in combinatorial maps or consecutive ablation of multiple targets producing multi-layered structures, and (v) adjustment of the number of laser pulses, resulting in either a spread of nanoparticles, islands of materials or a complete covering of a surface. Moreover, a variation of PLD, known as Matrix Assisted Pulsed Laser Evaporation, allows for deposition of organic materials, ranging from polymers to proteins and even living cells, otherwise difficult to transfer unaltered in the form of thin films by other techniques. Furthermore, the use of laser light as transfer agent ensures purity of films and pulse-to-pulse deposition allows for an unprecedented control of film thickness at the nm level. This Special Issue is a collection of state-of-the art research papers and reviews in which the topics of interest are devoted to thin film synthesis by PLD and MAPLE, for numerous research and industry field applications, such as bio-active coatings for medical implants and hard, protective coatings for cutting and drilling tools withstanding high friction and elevated temperatures, sensors, solar cells, lithography, magnetic devices, energy-storage and conversion devices, controlled drug delivery and in situ microstructuring for boosting of surface properties.
Technology: general issues --- thin films --- matrix-assisted pulsed laser evaporation --- shellac --- enteric coatings --- PLD --- ITO --- nanoimprint lithography --- coatings --- nanostructure --- iron oxide --- pulsed laser deposition --- aluminum nitride --- nanoindentation testing --- TEM imaging --- FTIR spectroscopy --- ellipsometry --- complex refractive index --- composite coatings --- MAPLE --- Lactoferrin --- macrophage interactions --- animal-origin calcium phosphate coatings --- natural hydroxyapatite --- doping --- high adherence --- pulsed laser deposition technique --- biomimetic applications --- target preparation --- room temperature ferromagnetism --- dilute magnetic semiconductor --- Indium oxide --- (InFe)2O3 --- PLD films --- energy storage --- thin-film electrodes --- thin-film solid electrolyte --- lithium microbatteries --- calcium phosphate-based coatings --- synthetic and natural hydroxyapatite --- in vivo testing --- biomedical applications --- n/a
Choose an application
The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.
pulsed electron deposition --- thin films --- orthopedic applications --- bioactivity --- ceramic coatings --- yttria-stabilized zirconia --- calcium phosphates --- hydroxyapatite --- biomimetic coatings --- antibacterial coatings --- thin film --- RF magnetron sputtering --- pulsed DC --- Silicon --- bio-coatings --- biomimetics --- laser deposition --- PLD --- MAPLE --- tissue engineering --- cancer --- titanium-based carbonitrides --- coating --- corrosion resistance --- X-ray diffraction --- nanoindentation --- cathodic arc deposition --- biological-derived hydroxyapatite coatings --- lithium doping --- food industrial by-products --- in vivo extraction force --- pulsed laser deposition --- 3D printing --- calcium phosphate --- PEEK --- surface modification --- sputtering --- ToFSIMS --- XPS --- implant coating --- bioactive glass --- copper doping --- gallium doping --- mechanical --- cytocompatibility --- antibacterial --- physical vapour deposition --- thin-films --- medical devices --- biomimicry
Choose an application
Despite its limitation in terms of surface covered area, the PLD technique still gathers interest among researchers by offering endless possibilities for tuning thin film composition and enhancing their properties of interest due to: (i) the easiness of a stoichiometric transfer even for very complex target materials, (ii) high adherence of the deposited structures to the substrate, (iii) controlled degree of phase, crystallinity, and thickness of deposited coatings, (iv) versatility of the experimental set-up which allows for simultaneous ablation of multiple targets resulting in combinatorial maps or consecutive ablation of multiple targets producing multi-layered structures, and (v) adjustment of the number of laser pulses, resulting in either a spread of nanoparticles, islands of materials or a complete covering of a surface. Moreover, a variation of PLD, known as Matrix Assisted Pulsed Laser Evaporation, allows for deposition of organic materials, ranging from polymers to proteins and even living cells, otherwise difficult to transfer unaltered in the form of thin films by other techniques. Furthermore, the use of laser light as transfer agent ensures purity of films and pulse-to-pulse deposition allows for an unprecedented control of film thickness at the nm level. This Special Issue is a collection of state-of-the art research papers and reviews in which the topics of interest are devoted to thin film synthesis by PLD and MAPLE, for numerous research and industry field applications, such as bio-active coatings for medical implants and hard, protective coatings for cutting and drilling tools withstanding high friction and elevated temperatures, sensors, solar cells, lithography, magnetic devices, energy-storage and conversion devices, controlled drug delivery and in situ microstructuring for boosting of surface properties.
thin films --- matrix-assisted pulsed laser evaporation --- shellac --- enteric coatings --- PLD --- ITO --- nanoimprint lithography --- coatings --- nanostructure --- iron oxide --- pulsed laser deposition --- aluminum nitride --- nanoindentation testing --- TEM imaging --- FTIR spectroscopy --- ellipsometry --- complex refractive index --- composite coatings --- MAPLE --- Lactoferrin --- macrophage interactions --- animal-origin calcium phosphate coatings --- natural hydroxyapatite --- doping --- high adherence --- pulsed laser deposition technique --- biomimetic applications --- target preparation --- room temperature ferromagnetism --- dilute magnetic semiconductor --- Indium oxide --- (InFe)2O3 --- PLD films --- energy storage --- thin-film electrodes --- thin-film solid electrolyte --- lithium microbatteries --- calcium phosphate-based coatings --- synthetic and natural hydroxyapatite --- in vivo testing --- biomedical applications --- n/a
Choose an application
The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.
Technology: general issues --- pulsed electron deposition --- thin films --- orthopedic applications --- bioactivity --- ceramic coatings --- yttria-stabilized zirconia --- calcium phosphates --- hydroxyapatite --- biomimetic coatings --- antibacterial coatings --- thin film --- RF magnetron sputtering --- pulsed DC --- Silicon --- bio-coatings --- biomimetics --- laser deposition --- PLD --- MAPLE --- tissue engineering --- cancer --- titanium-based carbonitrides --- coating --- corrosion resistance --- X-ray diffraction --- nanoindentation --- cathodic arc deposition --- biological-derived hydroxyapatite coatings --- lithium doping --- food industrial by-products --- in vivo extraction force --- pulsed laser deposition --- 3D printing --- calcium phosphate --- PEEK --- surface modification --- sputtering --- ToFSIMS --- XPS --- implant coating --- bioactive glass --- copper doping --- gallium doping --- mechanical --- cytocompatibility --- antibacterial --- physical vapour deposition --- thin-films --- medical devices --- biomimicry
Choose an application
Despite its limitation in terms of surface covered area, the PLD technique still gathers interest among researchers by offering endless possibilities for tuning thin film composition and enhancing their properties of interest due to: (i) the easiness of a stoichiometric transfer even for very complex target materials, (ii) high adherence of the deposited structures to the substrate, (iii) controlled degree of phase, crystallinity, and thickness of deposited coatings, (iv) versatility of the experimental set-up which allows for simultaneous ablation of multiple targets resulting in combinatorial maps or consecutive ablation of multiple targets producing multi-layered structures, and (v) adjustment of the number of laser pulses, resulting in either a spread of nanoparticles, islands of materials or a complete covering of a surface. Moreover, a variation of PLD, known as Matrix Assisted Pulsed Laser Evaporation, allows for deposition of organic materials, ranging from polymers to proteins and even living cells, otherwise difficult to transfer unaltered in the form of thin films by other techniques. Furthermore, the use of laser light as transfer agent ensures purity of films and pulse-to-pulse deposition allows for an unprecedented control of film thickness at the nm level. This Special Issue is a collection of state-of-the art research papers and reviews in which the topics of interest are devoted to thin film synthesis by PLD and MAPLE, for numerous research and industry field applications, such as bio-active coatings for medical implants and hard, protective coatings for cutting and drilling tools withstanding high friction and elevated temperatures, sensors, solar cells, lithography, magnetic devices, energy-storage and conversion devices, controlled drug delivery and in situ microstructuring for boosting of surface properties.
Technology: general issues --- thin films --- matrix-assisted pulsed laser evaporation --- shellac --- enteric coatings --- PLD --- ITO --- nanoimprint lithography --- coatings --- nanostructure --- iron oxide --- pulsed laser deposition --- aluminum nitride --- nanoindentation testing --- TEM imaging --- FTIR spectroscopy --- ellipsometry --- complex refractive index --- composite coatings --- MAPLE --- Lactoferrin --- macrophage interactions --- animal-origin calcium phosphate coatings --- natural hydroxyapatite --- doping --- high adherence --- pulsed laser deposition technique --- biomimetic applications --- target preparation --- room temperature ferromagnetism --- dilute magnetic semiconductor --- Indium oxide --- (InFe)2O3 --- PLD films --- energy storage --- thin-film electrodes --- thin-film solid electrolyte --- lithium microbatteries --- calcium phosphate-based coatings --- synthetic and natural hydroxyapatite --- in vivo testing --- biomedical applications
Choose an application
The world of laser matter interaction has known great and rapid advancements in the last few years, with a considerable increase in the number of both experimental and theoretical studies. The classical paradigm used to describe the dynamics of laser produced plasmas has been challenged by new peculiar phenomena observed experimentally, like plasma particles’ oscillations, plume splitting and self-structuring behavior during the expansion of the ejected particles. The use of multiple complementary techniques has become a requirement nowadays, as different aspects can be showcased by specific experimental approaches. To balance these non-linear effects and still remain tributary to the classical theoretical, views on laser produced plasma dynamics novel theoretical models that cover the two sides of the ablation plasma (differentiability and non-differentiability) still need to be developed. Plasma is a strongly nonlinear dynamic system, with many degrees of freedom and other symmetries, favorable for the development of ordered structures, instabilities and transitions (from ordered to chaotic states). In such contexts, we showcased research based on global and local symmetries, complexity and invariance. This special number highlighted exciting new phenomena related to laser produced plasma dynamics with the implementation of theoretical models, towards understanding the complex reality of laser matter interaction.
Lorenz system --- fractal analysis --- laser produced plasmas --- plasma structuring --- ionic oscillations --- optical emission spectroscopy --- laser ablation --- petrographic analysis --- fractal model --- group invariance --- nitinol --- pulsed laser deposition --- in situ plasma monitoring --- thin films --- fractal modelling --- SL(2R) invariance --- homographic transformations --- Riccati equation --- plasma diagnostic --- hydroxyapatite thin film --- charged particle oscillations --- Langmuir probe --- Lie groups --- joint invariant functions
Listing 1 - 10 of 28 | << page >> |
Sort by
|