Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (3)

2020 (2)

Listing 1 - 5 of 5
Sort by

Book
Metabolomics, Oxidative, and Nitrosative Stress in the Perinatal Period
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies focusing on the perinatal period face unique challenges, yet research in this area is extremely important, as this period of life is highly delicate and adverse events might have a long-lasting impact. With the advent of powerful high-resolution and high-throughput analytical methods, researchers have started to successfully develop and implement novel approaches in this area. New insights have great potential to be translated into novel diagnostic tools, as well as alternative preventive and treatment approaches. This book collects a series of timely review and original research articles focusing on metabolomic, oxidative, and nitrosative stress in the perinatal period.We would like to thank all involved authors for their high-quality contributions and their commitment to the publication of this work and hope that this book will be a useful resource for students, scientists, and doctors working in this specific area of application.


Book
Metabolomics, Oxidative, and Nitrosative Stress in the Perinatal Period
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies focusing on the perinatal period face unique challenges, yet research in this area is extremely important, as this period of life is highly delicate and adverse events might have a long-lasting impact. With the advent of powerful high-resolution and high-throughput analytical methods, researchers have started to successfully develop and implement novel approaches in this area. New insights have great potential to be translated into novel diagnostic tools, as well as alternative preventive and treatment approaches. This book collects a series of timely review and original research articles focusing on metabolomic, oxidative, and nitrosative stress in the perinatal period.We would like to thank all involved authors for their high-quality contributions and their commitment to the publication of this work and hope that this book will be a useful resource for students, scientists, and doctors working in this specific area of application.


Book
Metabolomics, Oxidative, and Nitrosative Stress in the Perinatal Period
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Studies focusing on the perinatal period face unique challenges, yet research in this area is extremely important, as this period of life is highly delicate and adverse events might have a long-lasting impact. With the advent of powerful high-resolution and high-throughput analytical methods, researchers have started to successfully develop and implement novel approaches in this area. New insights have great potential to be translated into novel diagnostic tools, as well as alternative preventive and treatment approaches. This book collects a series of timely review and original research articles focusing on metabolomic, oxidative, and nitrosative stress in the perinatal period.We would like to thank all involved authors for their high-quality contributions and their commitment to the publication of this work and hope that this book will be a useful resource for students, scientists, and doctors working in this specific area of application.

Keywords

Medicine --- glutathione --- glutamate --- oxidative stress --- hypoxia ischemia --- endotoxin --- magnetic resonance spectroscopy --- N-acetylcysteine --- vitamin D --- neonatal HIE --- MRS --- preterm birth --- sex differences --- male disadvantage --- female advantage --- bronchopulmonary dysplasia --- retinopathy of prematurity --- necrotizing enterocolitis --- intraventricular hemorrhage --- periventricular leukomalacia --- mortality --- transposition of the great arteries --- balloon atrial septostomy --- hypoxemia --- metabolomics --- newborn --- liquid chromatography-mass spectrometry (LC-MS) --- allopurinol --- hypothermia --- hypoxic-ischemic encephalopathy --- oxidative damage --- donor milk --- treatment --- Holder pasteurization --- breastmilk --- preterm --- antioxidant capacity --- asphyxia neonatorum --- non-invasive diagnostics --- saliva --- neonatal hypoxia-ischemia --- kynurenic acid (KYNA) --- neuroprotection --- hyperoxia --- prematurity --- glutathione --- glutamate --- oxidative stress --- hypoxia ischemia --- endotoxin --- magnetic resonance spectroscopy --- N-acetylcysteine --- vitamin D --- neonatal HIE --- MRS --- preterm birth --- sex differences --- male disadvantage --- female advantage --- bronchopulmonary dysplasia --- retinopathy of prematurity --- necrotizing enterocolitis --- intraventricular hemorrhage --- periventricular leukomalacia --- mortality --- transposition of the great arteries --- balloon atrial septostomy --- hypoxemia --- metabolomics --- newborn --- liquid chromatography-mass spectrometry (LC-MS) --- allopurinol --- hypothermia --- hypoxic-ischemic encephalopathy --- oxidative damage --- donor milk --- treatment --- Holder pasteurization --- breastmilk --- preterm --- antioxidant capacity --- asphyxia neonatorum --- non-invasive diagnostics --- saliva --- neonatal hypoxia-ischemia --- kynurenic acid (KYNA) --- neuroprotection --- hyperoxia --- prematurity


Book
Cellular and Molecular Mechanisms in Pathogenesis of Multiple Sclerosis
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Multiple sclerosis (MS) is one of the most common neurological disorders in young adults. The etiology of MS is not known, but it is generally accepted that it is autoimmune in nature. Our knowledge of the pathogenesis of MS has increased tremendously in the past decade through clinical studies and the use of experimental autoimmune encephalomyelitis (EAE), a model that has been widely used for MS research. Major advances in the field, such as understanding the roles of pathogenic Th17 cells, myeloid cells, and B cells in MS/EAE, as well as cytokine and chemokine signaling that controls neuroinflammation, have led to the development of potential and clinically approved disease-modifying agents (DMAs). There are many aspects related to the initiation, relapse and remission, and progression of MS that are yet to be elucidated. For instance, what are the genetic and environmental risk factors that promote the initiation of MS, and how do these factors impact the immune system? What factors drive the progression of MS, and what are the roles of peripheral immune cells in disease progression? How do the CNS-infiltrated immune cells interact with the CNS-resident glial cells when the disease progresses? What is the role of microbiome in MS? Can we develop animal models that better represent subcategories of MS? Understanding the cellular and molecular mechanisms that govern the pathogenesis of MS will help to develop novel and more specific therapeutic strategies that will ultimately improve clinical outcomes of the treatments. This Special Issue of Cells has published original research articles, a retrospective clinical report, and review articles that investigate the cellular and molecular basis of MS.

Keywords

Medicine --- neutrophils --- lymphocytes --- NLR --- multiple sclerosis --- disease activity --- inside-out --- outside-in --- oligodendrocytosis --- demyelination --- gliosis --- histology --- top-down proteomics --- bioinformatics --- mitochondria --- CD4+ T cells --- memory T cells --- autoimmune disease --- effector memory T cell --- central memory T cell --- tissue-resident T cell --- experimental autoimmune encephalomyelitis --- monocytes --- granulocyte-macrophage colony-stimulating factor --- S100B --- relapsing-remitting experimental autoimmune encephalomyelitis --- pentamidine --- NG2-glia --- progenitors --- lineage --- in utero electroporation --- morphometric analyses --- clonal analyses --- lesioned brain --- sphingosine-1-phosphate receptors --- glutamate synaptic dysfunction --- microglia --- T lymphocytes --- experimental autoimmune encephalomyelitis (EAE) --- pro-inflammatory cytokines --- neuroinflammation --- ozanimod --- AUY954 --- A971432 --- S1P1 --- S1P5 --- kynurenine pathway --- kynurenic acid --- oxidative stress --- quinolinic acid --- N-acetylserotonin --- IDO --- NAD+, multiple sclerosis --- laquinimod --- neutrophils --- lymphocytes --- NLR --- multiple sclerosis --- disease activity --- inside-out --- outside-in --- oligodendrocytosis --- demyelination --- gliosis --- histology --- top-down proteomics --- bioinformatics --- mitochondria --- CD4+ T cells --- memory T cells --- autoimmune disease --- effector memory T cell --- central memory T cell --- tissue-resident T cell --- experimental autoimmune encephalomyelitis --- monocytes --- granulocyte-macrophage colony-stimulating factor --- S100B --- relapsing-remitting experimental autoimmune encephalomyelitis --- pentamidine --- NG2-glia --- progenitors --- lineage --- in utero electroporation --- morphometric analyses --- clonal analyses --- lesioned brain --- sphingosine-1-phosphate receptors --- glutamate synaptic dysfunction --- microglia --- T lymphocytes --- experimental autoimmune encephalomyelitis (EAE) --- pro-inflammatory cytokines --- neuroinflammation --- ozanimod --- AUY954 --- A971432 --- S1P1 --- S1P5 --- kynurenine pathway --- kynurenic acid --- oxidative stress --- quinolinic acid --- N-acetylserotonin --- IDO --- NAD+, multiple sclerosis --- laquinimod


Book
Cellular and Molecular Mechanisms in Pathogenesis of Multiple Sclerosis
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Multiple sclerosis (MS) is one of the most common neurological disorders in young adults. The etiology of MS is not known, but it is generally accepted that it is autoimmune in nature. Our knowledge of the pathogenesis of MS has increased tremendously in the past decade through clinical studies and the use of experimental autoimmune encephalomyelitis (EAE), a model that has been widely used for MS research. Major advances in the field, such as understanding the roles of pathogenic Th17 cells, myeloid cells, and B cells in MS/EAE, as well as cytokine and chemokine signaling that controls neuroinflammation, have led to the development of potential and clinically approved disease-modifying agents (DMAs). There are many aspects related to the initiation, relapse and remission, and progression of MS that are yet to be elucidated. For instance, what are the genetic and environmental risk factors that promote the initiation of MS, and how do these factors impact the immune system? What factors drive the progression of MS, and what are the roles of peripheral immune cells in disease progression? How do the CNS-infiltrated immune cells interact with the CNS-resident glial cells when the disease progresses? What is the role of microbiome in MS? Can we develop animal models that better represent subcategories of MS? Understanding the cellular and molecular mechanisms that govern the pathogenesis of MS will help to develop novel and more specific therapeutic strategies that will ultimately improve clinical outcomes of the treatments. This Special Issue of Cells has published original research articles, a retrospective clinical report, and review articles that investigate the cellular and molecular basis of MS.

Listing 1 - 5 of 5
Sort by