Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (4)

Listing 1 - 4 of 4
Sort by

Book
Additive Manufacturing of Bio and Synthetic Polymers
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.

Keywords

Technology: general issues --- History of engineering & technology --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene


Book
Additive Manufacturing of Bio and Synthetic Polymers
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.


Book
Additive Manufacturing of Bio and Synthetic Polymers
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM.

Keywords

Technology: general issues --- History of engineering & technology --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene --- polylactic acid (PLA) --- natural fibres --- biocomposite --- mechanical properties --- thermoplastic starch --- biopolymer --- composite --- food packaging --- pitch --- polyethylene --- carbon fibres --- extrusion --- blend --- antimicrobial --- antibacterial --- 3D printing --- fused filament fabrication --- composite material --- fused-filament fabrication --- mechanical strength --- naked mole-rat algorithm --- optimization --- process parameters --- bio-based polyethylene composite --- X-ray tomography --- CNT --- MWCNT --- non-covalent functionalisation --- polythiophene --- P3HT --- reaction time --- natural fiber composite --- product design --- sustainability design --- design process --- epoxidized jatropha oil --- shape memory polymer --- bio-based polymer --- jatropha oil --- ABS --- fatigue --- thermo-mechanical loads --- building orientation --- nozzle size --- layer thickness --- drug delivery --- biodegradable polymers --- polymeric scaffolds --- natural bioactive polymers --- antimicrobial properties --- anticancer activity --- tissue engineering --- lattice material --- flexible TPU --- internal architecture --- minimum ignition temperature of dispersed dust --- dust explosion --- dust cloud --- polyamide 12 --- additive technologies --- kenaf fibre --- fibre treatment --- thermal properties --- Fused Deposition Modelling (FDM) --- silver nanopowder --- kenaf --- high-density polyethylene


Book
Synthesis, Processing, Structure and Properties of Polymer Materials
Authors: ---
ISBN: 3036558977 3036558985 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this reprint is to highlight the progress and fundamental aspects for the synthesis, characterization, properties, and application of novel polymeric materials, as well as their copolymers, composites, and nanocomposites.

Keywords

Plastics & polymers technology --- poly(lactic acid) --- epoxidized natural rubber --- polymer blend --- natural additives --- antioxidant --- polymer blending --- radiation crosslinking --- polyethylene --- polyurethane --- heat resistance --- mechanical property --- aramid fiber --- ballistic test --- failure mechanism --- cyclotriphosphazane --- flame retardancy --- dielectric properties --- azo compound --- liquid crystal --- structure–property relationship --- axial behavior --- geopolymer concrete (GC) --- ferrocement --- finite element analysis (FEA) --- polyacrylonitrile --- lignin --- electrospinning --- selective chemical dissolution --- porous nanofibers --- nanofibers --- soft template --- peat soil --- cement --- stabilization --- fly ash --- polypropylene fiber --- unconfined compressive strength (UCS) --- California bearing ratio (CBR) --- scanning electron microscopy (SEM) --- bio-based polyurethanes --- jatropha oil --- algae oil --- recovered palm oil --- epoxy composite --- green composite --- corn cob --- polycarbonates --- transesterification --- polycondensation --- polymer --- hydrogen --- hydrophobic --- sensing --- nanostructures --- palladium --- polymer composite --- fibre-prestressing --- residual stresses --- PCL–SBA-15 nanocomposites --- real-time variable-temperature synchrotron measurements --- confinement --- mechanical behavior --- nanoclay --- nanocomposites --- mechanical properties --- impact properties --- hardness --- polymer composites --- graphene quantum dots --- bioactive --- biomedical --- synthesis --- PVK --- hexylthiophene --- PANI --- nanocomposite --- photovoltaic cells --- DFT --- polyhydroxyalkanoates --- fibers --- biodegradability --- packaging --- patents --- poly(aminopropyl/phenyl)silsesquioxane --- thiol-ene --- kinetics --- activation energy --- polymer characterization --- viscoelasticity --- DMA --- solution blow spinning --- polyethylene oxide --- morphology --- materials characterization --- polymer dissolution --- kaolin flocculation --- aggregate resistance --- salinity --- flocculation kinetic --- shear rate --- thermoplastic starch --- silane --- foam --- carbon dioxide --- microcapsules --- dip coating --- encapsulation --- spectroscopy --- microscopy --- antibacterial silver --- polyaniline --- dodecylbenzene sulfonic acid --- γ-Al2O3 --- in situ polymerization --- core–shell nanocomposite --- polyphosphazene --- micro-nanospheres --- species-absorbing mechanisms --- hydrophobicity --- thermochemical --- PVDF --- alkali-grafting --- α-methyl styrene --- acrylonitrile --- proton exchange membrane --- block copolymers --- random copolymers --- catalytic membranes --- esterification --- isopropyl acetate --- bioinspired bottlebrush polymers --- aqueous boundary lubrication --- friction --- wear resistance --- supramolecular hydrogel --- acrylic acid --- maleic anhydride --- terpyridine --- coordination interaction --- thermoplastic polyurethanes --- surface free energy --- dithiol --- differential scanning calorimetry --- optical properties --- arsine --- ligands --- polypropylene --- catalyst --- degradation --- sol-gel process --- 3D network hybrid materials --- nanoparticles --- nanodispersity --- ionic liquids --- n/a --- structure-property relationship --- PCL-SBA-15 nanocomposites --- core-shell nanocomposite

Listing 1 - 4 of 4
Sort by