Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Wind diesel power systems (WDPSs) are isolated microgrids that combine diesel generators (DGs) with wind turbine generators (WTGs). Often, WDPS are the result of adding WTGs to a previous existing diesel power plant located in a remote place where there is an available wind resource. By means of power supplied by WTGs, fuel consumption and CO2 emissions are reduced. WDPSs are isolated power systems with low inertia where important system frequency and voltage variations occur. WDPS dynamic modeling and simulation allows short-term simulations to be carried out to obtain detailed electrical variable transients so that WDPS stability and power quality can be tested. This book includes papers on several subjects regarding WDPSs: the main topic of interest is WDPS dynamic modeling and simulation, but related areas such as the sizing of the different WDPS components, studies concerning the control of WDPSs or the use of energy storage systems (ESSs) in WDPSs and the benefits that ESSs provide to WDPS are also discussed. The book also deals with related AC isolated microgrids, such as wind-hydro microgrids or wind-photovoltaic-diesel microgrids.
diesel generator --- wind turbine generator --- isolated microgrid --- flywheel energy storage --- dump load --- power systems simulation --- power systems control --- frequency control --- isolated system --- linear regression --- power system stability --- wind turbines --- hydro turbine generator --- isolated microgrids --- power system simulation --- power quality --- Isla de la Juventud --- electrical power system --- renewable energy --- long-term planning --- LINDA model --- design methodology --- WDPS --- microgrid --- small wind turbine --- wind data sources --- HOMER Pro --- wind energy --- hybrid systems --- harsh climatic --- pitch-control --- intelligent control system --- icing prediction --- predictive analytics --- adapted technologies --- n/a
Choose an application
Wind diesel power systems (WDPSs) are isolated microgrids that combine diesel generators (DGs) with wind turbine generators (WTGs). Often, WDPS are the result of adding WTGs to a previous existing diesel power plant located in a remote place where there is an available wind resource. By means of power supplied by WTGs, fuel consumption and CO2 emissions are reduced. WDPSs are isolated power systems with low inertia where important system frequency and voltage variations occur. WDPS dynamic modeling and simulation allows short-term simulations to be carried out to obtain detailed electrical variable transients so that WDPS stability and power quality can be tested. This book includes papers on several subjects regarding WDPSs: the main topic of interest is WDPS dynamic modeling and simulation, but related areas such as the sizing of the different WDPS components, studies concerning the control of WDPSs or the use of energy storage systems (ESSs) in WDPSs and the benefits that ESSs provide to WDPS are also discussed. The book also deals with related AC isolated microgrids, such as wind-hydro microgrids or wind-photovoltaic-diesel microgrids.
Technology: general issues --- History of engineering & technology --- diesel generator --- wind turbine generator --- isolated microgrid --- flywheel energy storage --- dump load --- power systems simulation --- power systems control --- frequency control --- isolated system --- linear regression --- power system stability --- wind turbines --- hydro turbine generator --- isolated microgrids --- power system simulation --- power quality --- Isla de la Juventud --- electrical power system --- renewable energy --- long-term planning --- LINDA model --- design methodology --- WDPS --- microgrid --- small wind turbine --- wind data sources --- HOMER Pro --- wind energy --- hybrid systems --- harsh climatic --- pitch-control --- intelligent control system --- icing prediction --- predictive analytics --- adapted technologies
Choose an application
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth. This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
Thermodynamics --- Differentiable dynamical systems. --- Differential dynamical systems --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Mathematics. --- Addition. --- Adiabatic process. --- Applied mathematics. --- Arthur Eddington. --- Asymmetry. --- Available energy (particle collision). --- Axiom. --- Balance equation. --- Banach space. --- Boltzmann's entropy formula. --- Brillouin scattering. --- Carnot cycle. --- Classical mechanics. --- Clausius (crater). --- Compact space. --- Conservation law. --- Conservation of energy. --- Constant of integration. --- Continuous function (set theory). --- Continuous function. --- Control theory. --- Deformation (mechanics). --- Derivative. --- Diathermal wall. --- Diffeomorphism. --- Differentiable function. --- Diffusion process. --- Dimension (vector space). --- Dimension. --- Dissipation. --- Dot product. --- Dynamical system. --- Emergence. --- Energy density. --- Energy level. --- Energy storage. --- Energy. --- Entropy. --- Equation. --- Equations of motion. --- Equilibrium point. --- Equilibrium thermodynamics. --- Equipartition theorem. --- Existential quantification. --- First law of thermodynamics. --- Hamiltonian mechanics. --- Heat capacity. --- Heat death of the universe. --- Heat flux. --- Heat transfer. --- Homeomorphism. --- Hydrogen atom. --- Ideal gas. --- Inequality (mathematics). --- Infimum and supremum. --- Infinitesimal. --- Initial condition. --- Instant. --- Internal energy. --- Irreversible process. --- Isolated system. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Linear dynamical system. --- Lipschitz continuity. --- Local boundedness. --- Lyapunov function. --- Lyapunov stability. --- Mathematical optimization. --- Molecule. --- Non-equilibrium thermodynamics. --- Operator norm. --- Probability. --- Quantity. --- Reversible process (thermodynamics). --- Second law of thermodynamics. --- Semi-infinite. --- Smoothness. --- State variable. --- State-space representation. --- Statistical mechanics. --- Steady state. --- Summation. --- Supply (economics). --- Systems theory. --- Temperature. --- Theorem. --- Theoretical physics. --- Theory. --- Thermal conduction. --- Thermal equilibrium. --- Thermodynamic equilibrium. --- Thermodynamic process. --- Thermodynamic state. --- Thermodynamic system. --- Thermodynamic temperature. --- Thermodynamics. --- Time evolution. --- Zeroth law of thermodynamics.
Choose an application
This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar treatments by developing invariant set stability theorems, partial stability, Lagrange stability, boundedness, ultimate boundedness, dissipativity theory, vector dissipativity theory, energy-based hybrid control, optimal control, disturbance rejection control, and robust control for nonlinear impulsive and hybrid dynamical systems. A major contribution to mathematical system theory and control system theory, this book is written from a system-theoretic point of view with the highest standards of exposition and rigor. It is intended for graduate students, researchers, and practitioners of engineering and applied mathematics as well as computer scientists, physicists, and other scientists who seek a fundamental understanding of the rich dynamical behavior of impulsive and hybrid dynamical systems.
Automatic control. --- Control theory. --- Dynamics. --- Discrete-time systems. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Dynamics --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- DES (System analysis) --- Discrete event systems --- Sampled-data systems --- Digital control systems --- Discrete mathematics --- System analysis --- Linear time invariant systems --- Actuator. --- Adaptive control. --- Algorithm. --- Amplitude. --- Analog computer. --- Arbitrarily large. --- Asymptote. --- Asymptotic analysis. --- Axiom. --- Balance equation. --- Bode plot. --- Boundedness. --- Calculation. --- Center of mass (relativistic). --- Coefficient of restitution. --- Continuous function. --- Convex set. --- Differentiable function. --- Differential equation. --- Dissipation. --- Dissipative system. --- Dynamical system. --- Dynamical systems theory. --- Energy. --- Equations of motion. --- Equilibrium point. --- Escapement. --- Euler–Lagrange equation. --- Exponential stability. --- Forms of energy. --- Hamiltonian mechanics. --- Hamiltonian system. --- Hermitian matrix. --- Hooke's law. --- Hybrid system. --- Identity matrix. --- Inequality (mathematics). --- Infimum and supremum. --- Initial condition. --- Instability. --- Interconnection. --- Invariance theorem. --- Isolated system. --- Iterative method. --- Jacobian matrix and determinant. --- Lagrangian (field theory). --- Lagrangian system. --- Lagrangian. --- Likelihood-ratio test. --- Limit cycle. --- Limit set. --- Linear function. --- Linearization. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Mass balance. --- Mathematical optimization. --- Melting. --- Mixture. --- Moment of inertia. --- Momentum. --- Monotonic function. --- Negative feedback. --- Nonlinear programming. --- Nonlinear system. --- Nonnegative matrix. --- Optimal control. --- Ordinary differential equation. --- Orthant. --- Parameter. --- Partial differential equation. --- Passive dynamics. --- Poincaré conjecture. --- Potential energy. --- Proof mass. --- Quantity. --- Rate function. --- Requirement. --- Robust control. --- Second law of thermodynamics. --- Semi-infinite. --- Small-gain theorem. --- Special case. --- Spectral radius. --- Stability theory. --- State space. --- Stiffness. --- Supply (economics). --- Telecommunication. --- Theorem. --- Transpose. --- Uncertainty. --- Uniform boundedness. --- Uniqueness. --- Vector field. --- Vibration. --- Zeroth (software). --- Zeroth law of thermodynamics.
Choose an application
About 120 years ago, James Clerk Maxwell introduced his now legendary hypothetical "demon" as a challenge to the integrity of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science--and linkages have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Until now its important source material has been scattered throughout diverse journals.This book brings under one cover twenty-five reprints, including seminal works by Maxwell and William Thomson; historical reviews by Martin Klein, Edward Daub, and Peter Heimann; information theoretic contributions by Leo Szilard, Leon Brillouin, Dennis Gabor, and Jerome Rothstein; and innovations by Rolf Landauer and Charles Bennett illustrating linkages with the limits of computation. An introductory chapter summarizes the demon's life, from Maxwell's illustration of the second law's statistical nature to the most recent "exorcism" of the demon based on a need periodically to erase its memory. An annotated chronological bibliography is included.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Thermodynamics. --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Maxwell's demon. --- Adiabatic process. --- Automaton. --- Available energy (particle collision). --- Billiard-ball computer. --- Black hole information paradox. --- Black hole thermodynamics. --- Black-body radiation. --- Boltzmann's entropy formula. --- Boyle's law. --- Calculation. --- Carnot's theorem (thermodynamics). --- Catalysis. --- Chaos theory. --- Computation. --- Copying. --- Creation and annihilation operators. --- Digital physics. --- Dissipation. --- Distribution law. --- Domain wall. --- EPR paradox. --- Energy level. --- Entropy of mixing. --- Entropy. --- Exchange interaction. --- Expectation value (quantum mechanics). --- Extrapolation. --- Fair coin. --- Fermi–Dirac statistics. --- Gibbs free energy. --- Gibbs paradox. --- Guessing. --- Halting problem. --- Hamiltonian mechanics. --- Heat engine. --- Heat. --- Helmholtz free energy. --- Ideal gas. --- Idealization. --- Information theory. --- Instant. --- Internal energy. --- Irreversible process. --- James Prescott Joule. --- Johnson–Nyquist noise. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Least squares. --- Loschmidt's paradox. --- Ludwig Boltzmann. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Measurement. --- Mechanical equivalent of heat. --- Microscopic reversibility. --- Molecule. --- Negative temperature. --- Negentropy. --- Newton's law of universal gravitation. --- Nitrous oxide. --- Non-equilibrium thermodynamics. --- Old quantum theory. --- Particle in a box. --- Perpetual motion. --- Photon. --- Probability. --- Quantity. --- Quantum limit. --- Quantum mechanics. --- Rectangular potential barrier. --- Result. --- Reversible computing. --- Reversible process (thermodynamics). --- Richard Feynman. --- Rolf Landauer. --- Rudolf Clausius. --- Scattering. --- Schrödinger equation. --- Second law of thermodynamics. --- Self-information. --- Spontaneous process. --- Standard state. --- Statistical mechanics. --- Superselection. --- Temperature. --- Theory of heat. --- Theory. --- Thermally isolated system. --- Thermodynamic equilibrium. --- Thermodynamic system. --- Thought experiment. --- Turing machine. --- Ultimate fate of the universe. --- Uncertainty principle. --- Unitarity (physics). --- Van der Waals force. --- Wave function collapse. --- Work output.
Listing 1 - 5 of 5 |
Sort by
|