Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2017 (6)

Listing 1 - 6 of 6
Sort by

Book
Recent Advances in Geomicrobiology of the Ocean Crust
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Igneous oceanic crust is one of the largest potential habitats for life on earth, and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles. However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems –a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust – and the microbial communities supported by these mineral-rich fluids. The Frontiers in Microbiology 3 September 2017 | Recent Advances in Geomicrobiology of the Ocean Crust papers in this special issue bring together recent discoveries of microbial presence, diversity and activity in these dynamic ocean environments. Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards, who was a pioneer and profound champion of studying microbes that “rust the crust”. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere.


Book
Recent Advances in Geomicrobiology of the Ocean Crust
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Igneous oceanic crust is one of the largest potential habitats for life on earth, and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles. However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems –a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust – and the microbial communities supported by these mineral-rich fluids. The Frontiers in Microbiology 3 September 2017 | Recent Advances in Geomicrobiology of the Ocean Crust papers in this special issue bring together recent discoveries of microbial presence, diversity and activity in these dynamic ocean environments. Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards, who was a pioneer and profound champion of studying microbes that “rust the crust”. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere.


Book
Geomicrobes: Life in Terrestrial Deep Subsurface
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The deep subsurface is, in addition to space, one of the last unknown frontiers to human kind. A significant part of life on Earth resides in the deep subsurface, hiding great potential of microbial life of which we know only little. The conditions in the deep terrestrial subsurface are thought to resemble those of early Earth, which makes this environment an analog for studying early life in addition to possible extraterrestrial life in ultra-extreme conditions. Early microorganisms played a great role in shaping the conditions on the young Earth. Even today deep subsurface microorganisms interact with their geological environment transforming the conditions in the groundwater and on rock surfaces. Essential elements for life are richly present but in difficultly accessible form. The elements driving the microbial deep life is still not completely identified. Most of the microorganisms detected by novel molecular techniques still lack cultured representatives. Nevertheless, using modern sequencing techniques and bioinformatics the functional roles of these microorganisms are being revealed. We are starting to see the differences and similarities between the life in the deep subsurface and surface domains. We may even begin to see the function of evolution by comparing deep life to life closer to the surface of Earth. Deep life consists of organisms from all known domains of life. This Research Topic reveals some of the rich diversity and functional properties of the great biomass residing in the deep dark subsurface.


Book
Recent Advances in Geomicrobiology of the Ocean Crust
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Igneous oceanic crust is one of the largest potential habitats for life on earth, and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles. However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems –a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust – and the microbial communities supported by these mineral-rich fluids. The Frontiers in Microbiology 3 September 2017 | Recent Advances in Geomicrobiology of the Ocean Crust papers in this special issue bring together recent discoveries of microbial presence, diversity and activity in these dynamic ocean environments. Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards, who was a pioneer and profound champion of studying microbes that “rust the crust”. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere.


Book
Geomicrobes: Life in Terrestrial Deep Subsurface
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The deep subsurface is, in addition to space, one of the last unknown frontiers to human kind. A significant part of life on Earth resides in the deep subsurface, hiding great potential of microbial life of which we know only little. The conditions in the deep terrestrial subsurface are thought to resemble those of early Earth, which makes this environment an analog for studying early life in addition to possible extraterrestrial life in ultra-extreme conditions. Early microorganisms played a great role in shaping the conditions on the young Earth. Even today deep subsurface microorganisms interact with their geological environment transforming the conditions in the groundwater and on rock surfaces. Essential elements for life are richly present but in difficultly accessible form. The elements driving the microbial deep life is still not completely identified. Most of the microorganisms detected by novel molecular techniques still lack cultured representatives. Nevertheless, using modern sequencing techniques and bioinformatics the functional roles of these microorganisms are being revealed. We are starting to see the differences and similarities between the life in the deep subsurface and surface domains. We may even begin to see the function of evolution by comparing deep life to life closer to the surface of Earth. Deep life consists of organisms from all known domains of life. This Research Topic reveals some of the rich diversity and functional properties of the great biomass residing in the deep dark subsurface.


Book
Geomicrobes: Life in Terrestrial Deep Subsurface
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The deep subsurface is, in addition to space, one of the last unknown frontiers to human kind. A significant part of life on Earth resides in the deep subsurface, hiding great potential of microbial life of which we know only little. The conditions in the deep terrestrial subsurface are thought to resemble those of early Earth, which makes this environment an analog for studying early life in addition to possible extraterrestrial life in ultra-extreme conditions. Early microorganisms played a great role in shaping the conditions on the young Earth. Even today deep subsurface microorganisms interact with their geological environment transforming the conditions in the groundwater and on rock surfaces. Essential elements for life are richly present but in difficultly accessible form. The elements driving the microbial deep life is still not completely identified. Most of the microorganisms detected by novel molecular techniques still lack cultured representatives. Nevertheless, using modern sequencing techniques and bioinformatics the functional roles of these microorganisms are being revealed. We are starting to see the differences and similarities between the life in the deep subsurface and surface domains. We may even begin to see the function of evolution by comparing deep life to life closer to the surface of Earth. Deep life consists of organisms from all known domains of life. This Research Topic reveals some of the rich diversity and functional properties of the great biomass residing in the deep dark subsurface.

Listing 1 - 6 of 6
Sort by