Listing 1 - 7 of 7 |
Sort by
|
Choose an application
This Special Issue features recent data concerning thioredoxins and glutaredoxins from various biological systems, including bacteria, mammals, and plants. Four of the sixteen articles are review papers that deal with the regulation of development of the effect of hydrogen peroxide and the interactions between oxidants and reductants, the description of methionine sulfoxide reductases, detoxification enzymes that require thioredoxin or glutaredoxin, and the response of plants to cold stress, respectively. This is followed by eleven research articles that focus on a reductant of thioredoxin in bacteria, a thioredoxin reductase, and a variety of plant and bacterial thioredoxins, including the m, f, o, and h isoforms and their targets. Various parameters are studied, including genetic, structural, and physiological properties of these systems. The redox regulation of monodehydroascorbate reductase, aminolevulinic acid dehydratase, and cytosolic isocitrate dehydrogenase could have very important consequences in plant metabolism. Also, the properties of the mitochondrial o-type thioredoxins and their unexpected capacity to bind iron–sulfur center (ISC) structures open new developments concerning the redox mitochondrial function and possibly ISC assembly in mitochondria. The final paper discusses interesting biotechnological applications of thioredoxin for breadmaking.
n/a --- regeneration --- posttranslational modification --- H2O2 --- chilling stress --- thioredoxin reductase --- X-ray crystallography --- photosynthesis --- Chlamydomonas reinhardtii --- protein --- monodehydroascorbate reductase --- methionine sulfoxide --- cysteine reactivity --- symbiosis --- plant --- MALDI-TOF mass spectrometry --- thioredoxins --- redox homeostasis --- methionine sulfoxide reductases --- redox --- redox signalling --- chloroplast --- protein-protein recognition --- cyanobacteria --- specificity --- wheat --- methanoarchaea --- stress --- redox regulation --- dough rheology --- methionine sulfoxide reductase --- electrostatic surface --- Calvin cycle --- ALAD --- metazoan --- Arabidopsis thaliana --- baking --- cold temperature --- macromolecular crystallography --- protein oxidation --- function --- methionine oxidation --- development --- iron–sulfur cluster --- tetrapyrrole biosynthesis --- legume plant --- glutathionylation --- Calvin-Benson cycle --- adult stem cells --- carbon fixation --- plastidial --- methionine --- redox active site --- ROS --- water stress --- NADPH --- repair --- physiological function --- signaling --- thioredoxin --- antioxidants --- glutathione --- glutaredoxin --- flavin --- Isocitrate dehydrogenase --- thiol redox network --- ageing --- disulfide --- mitochondria --- chlorophyll --- proteomic --- cysteine alkylation --- ferredoxin-thioredoxin reductase --- SAXS --- regulation --- oxidized protein repair --- ascorbate --- redox control --- nitrosylation --- iron-sulfur cluster
Choose an application
The application of genomic, transcriptomic, and proteomic analyses brings new dimensions to our understanding of the biology of phototrophic bacteria. Comparing gene sequences of photosynthetic reaction center proteins and a key enzyme of bacteriochlorophyll biosynthesis from more than 150 genomes demonstrates the ancient roots of phototrophic bacteria. The presence and phylogeny of biosynthetic pathways of the compatible solutes ectoine and glycine betaine define groups of marine and halophilic phototrophic bacteria. The wide range of ecological niches conquered during evolution is demonstrated by the adaptation of cyanobacterial genera Scytonema, Tolypothrix, and Nostoc to different temperature ranges and the adaptation of Heliorestis species to alkaline habitats. Differences between phototrophic purple bacteria from marine and freshwater habitats are reflected in the preference for sulfidic and non-sulfidic niches. Also, a high proportion of siderophore producers was found among isolates from freshwater sources opposed to those from salty habitats . The primary colonization of carbonate rocks by a group of novel endolithic cyanobacteria and the following successions were studied over 9 months. The genomic characterization of the aerobic Dinoroseobacter strain AAP5, the strictly anaerobic and syntrophic Prosthecochloris ethylica, and the strictly anaerobic Heliorestis convoluta is reported. Significant differences in relation to oxygen are reflected in oxygen production by some species, oxygen tolerance over a wide range of concentrations, and the use of oxygen for energy generation or a strictly anaerobic lifestyle. Relations to oxygen are highlighted in papers on photooxidative stress, regulation of iron–sulfur cluster formation, and interactions of redox regulators. In situ metatranscriptomic and proteomic studies demonstrate the high metabolic flexibility of Chloroflexus aggregans in a hot spring microbial mat and show its adaptation to the changing conditions over day and night periods by a well-coordinated regulation of key metabolic processes for both phototrophic and chemotrophic growth.
Research & information: general --- phylogeny --- photosynthetic reaction center proteins --- bacteriochlorophyll biosynthesis --- phototrophic purple bacteria --- evolution of anoxygenic photosynthesis --- iron-sulfur cluster --- isc genes --- suf genes --- antisense promoters --- OxyR --- IscR --- Irr --- anoxygenic phototrophic bacteria --- purple nonsulfur bacteria --- massive blooms --- pufM gene --- Rhodovulum --- phylogenomics --- bioerosion --- anoxygenic phototroph --- microbiome --- euendolith --- Rhodobacter capsulatus --- Rhodobacter sphaeroides --- photooxidative stress --- transcriptomics --- proteomics --- stress defense --- heliobacteria --- Heliorestis convoluta --- alkaliphilic bacteria --- soda lake --- bacteriochlorophyll g --- biological soil crust --- drylands --- niche partitioning --- nitrogen fixing cyanobacteria --- Alphaproteobacteria --- Rhodobacteraceae --- nitric oxide --- quorum sensing --- gene transfer agent --- motility --- Crp/Fnr --- Dnr --- RegA --- ChpT --- green sulfur bacteria --- syntrophy --- e-pili --- adhesion protein --- photosynthetic symbionts --- large multiheme cytochrome --- metagenomic binning --- genomes of photosynthetic bacteria --- glycine betaine biosynthesis --- ectoine biosynthesis --- osmotic adaptation --- phylogeny of osmolyte biosynthesis --- filamentous anoxygenic phototroph --- microbial mats --- hot springs --- metatranscriptomics --- energy metabolism --- carbon fixation --- aerobic anoxygenic phototrophic bacteria --- bacteriochlorophyll a --- photosynthesis genes --- rhodopsin --- Sphingomonadaceae --- aerobic anoxygenic phototrophs --- siderophore --- metallophore --- CAS assay --- Chromocurvus halotolerans strain EG19 --- n/a
Choose an application
Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.
Research & information: general --- Biology, life sciences --- CO dehydrogenase --- dihydrogen --- hydrogenase --- quantum/classical modeling --- density functional theory --- metal–dithiolene --- pyranopterin molybdenum enzymes --- fold-angle --- tungsten enzymes --- electronic structure --- pseudo-Jahn–Teller effect --- thione --- molybdenum cofactor --- Moco --- mixed-valence complex --- dithiolene ligand --- tetra-nuclear nickel complex --- X-ray structure --- magnetic moment --- formate hydrogenlyase --- hydrogen metabolism --- energy conservation --- MRP (multiple resistance and pH)-type Na+/H+ antiporter --- CCCP—carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA—5-(N-ethyl-N-isopropyl)-amiloride --- nicotinamide adenine dinucleotide (NADH) --- electron transfer --- enzyme kinetics --- enzyme structure --- formate dehydrogenase --- carbon assimilation --- Moco biosynthesis --- Fe-S cluster assembly --- l-cysteine desulfurase --- ISC --- SUF --- NIF --- iron --- molybdenum --- sulfur --- tungsten cofactor --- aldehyde:ferredoxin oxidoreductase --- benzoyl-CoA reductase --- acetylene hydratase --- [Fe]-hydrogenase --- FeGP cofactor --- guanylylpyridinol --- conformational changes --- X-ray crystallography --- iron-sulfur cluster --- persulfide --- metallocofactor --- frataxin --- Friedreich’s ataxia --- n/a --- metal-dithiolene --- pseudo-Jahn-Teller effect --- CCCP-carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA-5-(N-ethyl-N-isopropyl)-amiloride --- Friedreich's ataxia
Choose an application
Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.
CO dehydrogenase --- dihydrogen --- hydrogenase --- quantum/classical modeling --- density functional theory --- metal–dithiolene --- pyranopterin molybdenum enzymes --- fold-angle --- tungsten enzymes --- electronic structure --- pseudo-Jahn–Teller effect --- thione --- molybdenum cofactor --- Moco --- mixed-valence complex --- dithiolene ligand --- tetra-nuclear nickel complex --- X-ray structure --- magnetic moment --- formate hydrogenlyase --- hydrogen metabolism --- energy conservation --- MRP (multiple resistance and pH)-type Na+/H+ antiporter --- CCCP—carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA—5-(N-ethyl-N-isopropyl)-amiloride --- nicotinamide adenine dinucleotide (NADH) --- electron transfer --- enzyme kinetics --- enzyme structure --- formate dehydrogenase --- carbon assimilation --- Moco biosynthesis --- Fe-S cluster assembly --- l-cysteine desulfurase --- ISC --- SUF --- NIF --- iron --- molybdenum --- sulfur --- tungsten cofactor --- aldehyde:ferredoxin oxidoreductase --- benzoyl-CoA reductase --- acetylene hydratase --- [Fe]-hydrogenase --- FeGP cofactor --- guanylylpyridinol --- conformational changes --- X-ray crystallography --- iron-sulfur cluster --- persulfide --- metallocofactor --- frataxin --- Friedreich’s ataxia --- n/a --- metal-dithiolene --- pseudo-Jahn-Teller effect --- CCCP-carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA-5-(N-ethyl-N-isopropyl)-amiloride --- Friedreich's ataxia
Choose an application
The application of genomic, transcriptomic, and proteomic analyses brings new dimensions to our understanding of the biology of phototrophic bacteria. Comparing gene sequences of photosynthetic reaction center proteins and a key enzyme of bacteriochlorophyll biosynthesis from more than 150 genomes demonstrates the ancient roots of phototrophic bacteria. The presence and phylogeny of biosynthetic pathways of the compatible solutes ectoine and glycine betaine define groups of marine and halophilic phototrophic bacteria. The wide range of ecological niches conquered during evolution is demonstrated by the adaptation of cyanobacterial genera Scytonema, Tolypothrix, and Nostoc to different temperature ranges and the adaptation of Heliorestis species to alkaline habitats. Differences between phototrophic purple bacteria from marine and freshwater habitats are reflected in the preference for sulfidic and non-sulfidic niches. Also, a high proportion of siderophore producers was found among isolates from freshwater sources opposed to those from salty habitats . The primary colonization of carbonate rocks by a group of novel endolithic cyanobacteria and the following successions were studied over 9 months. The genomic characterization of the aerobic Dinoroseobacter strain AAP5, the strictly anaerobic and syntrophic Prosthecochloris ethylica, and the strictly anaerobic Heliorestis convoluta is reported. Significant differences in relation to oxygen are reflected in oxygen production by some species, oxygen tolerance over a wide range of concentrations, and the use of oxygen for energy generation or a strictly anaerobic lifestyle. Relations to oxygen are highlighted in papers on photooxidative stress, regulation of iron–sulfur cluster formation, and interactions of redox regulators. In situ metatranscriptomic and proteomic studies demonstrate the high metabolic flexibility of Chloroflexus aggregans in a hot spring microbial mat and show its adaptation to the changing conditions over day and night periods by a well-coordinated regulation of key metabolic processes for both phototrophic and chemotrophic growth.
phylogeny --- photosynthetic reaction center proteins --- bacteriochlorophyll biosynthesis --- phototrophic purple bacteria --- evolution of anoxygenic photosynthesis --- iron-sulfur cluster --- isc genes --- suf genes --- antisense promoters --- OxyR --- IscR --- Irr --- anoxygenic phototrophic bacteria --- purple nonsulfur bacteria --- massive blooms --- pufM gene --- Rhodovulum --- phylogenomics --- bioerosion --- anoxygenic phototroph --- microbiome --- euendolith --- Rhodobacter capsulatus --- Rhodobacter sphaeroides --- photooxidative stress --- transcriptomics --- proteomics --- stress defense --- heliobacteria --- Heliorestis convoluta --- alkaliphilic bacteria --- soda lake --- bacteriochlorophyll g --- biological soil crust --- drylands --- niche partitioning --- nitrogen fixing cyanobacteria --- Alphaproteobacteria --- Rhodobacteraceae --- nitric oxide --- quorum sensing --- gene transfer agent --- motility --- Crp/Fnr --- Dnr --- RegA --- ChpT --- green sulfur bacteria --- syntrophy --- e-pili --- adhesion protein --- photosynthetic symbionts --- large multiheme cytochrome --- metagenomic binning --- genomes of photosynthetic bacteria --- glycine betaine biosynthesis --- ectoine biosynthesis --- osmotic adaptation --- phylogeny of osmolyte biosynthesis --- filamentous anoxygenic phototroph --- microbial mats --- hot springs --- metatranscriptomics --- energy metabolism --- carbon fixation --- aerobic anoxygenic phototrophic bacteria --- bacteriochlorophyll a --- photosynthesis genes --- rhodopsin --- Sphingomonadaceae --- aerobic anoxygenic phototrophs --- siderophore --- metallophore --- CAS assay --- Chromocurvus halotolerans strain EG19 --- n/a
Choose an application
The application of genomic, transcriptomic, and proteomic analyses brings new dimensions to our understanding of the biology of phototrophic bacteria. Comparing gene sequences of photosynthetic reaction center proteins and a key enzyme of bacteriochlorophyll biosynthesis from more than 150 genomes demonstrates the ancient roots of phototrophic bacteria. The presence and phylogeny of biosynthetic pathways of the compatible solutes ectoine and glycine betaine define groups of marine and halophilic phototrophic bacteria. The wide range of ecological niches conquered during evolution is demonstrated by the adaptation of cyanobacterial genera Scytonema, Tolypothrix, and Nostoc to different temperature ranges and the adaptation of Heliorestis species to alkaline habitats. Differences between phototrophic purple bacteria from marine and freshwater habitats are reflected in the preference for sulfidic and non-sulfidic niches. Also, a high proportion of siderophore producers was found among isolates from freshwater sources opposed to those from salty habitats . The primary colonization of carbonate rocks by a group of novel endolithic cyanobacteria and the following successions were studied over 9 months. The genomic characterization of the aerobic Dinoroseobacter strain AAP5, the strictly anaerobic and syntrophic Prosthecochloris ethylica, and the strictly anaerobic Heliorestis convoluta is reported. Significant differences in relation to oxygen are reflected in oxygen production by some species, oxygen tolerance over a wide range of concentrations, and the use of oxygen for energy generation or a strictly anaerobic lifestyle. Relations to oxygen are highlighted in papers on photooxidative stress, regulation of iron–sulfur cluster formation, and interactions of redox regulators. In situ metatranscriptomic and proteomic studies demonstrate the high metabolic flexibility of Chloroflexus aggregans in a hot spring microbial mat and show its adaptation to the changing conditions over day and night periods by a well-coordinated regulation of key metabolic processes for both phototrophic and chemotrophic growth.
Research & information: general --- phylogeny --- photosynthetic reaction center proteins --- bacteriochlorophyll biosynthesis --- phototrophic purple bacteria --- evolution of anoxygenic photosynthesis --- iron-sulfur cluster --- isc genes --- suf genes --- antisense promoters --- OxyR --- IscR --- Irr --- anoxygenic phototrophic bacteria --- purple nonsulfur bacteria --- massive blooms --- pufM gene --- Rhodovulum --- phylogenomics --- bioerosion --- anoxygenic phototroph --- microbiome --- euendolith --- Rhodobacter capsulatus --- Rhodobacter sphaeroides --- photooxidative stress --- transcriptomics --- proteomics --- stress defense --- heliobacteria --- Heliorestis convoluta --- alkaliphilic bacteria --- soda lake --- bacteriochlorophyll g --- biological soil crust --- drylands --- niche partitioning --- nitrogen fixing cyanobacteria --- Alphaproteobacteria --- Rhodobacteraceae --- nitric oxide --- quorum sensing --- gene transfer agent --- motility --- Crp/Fnr --- Dnr --- RegA --- ChpT --- green sulfur bacteria --- syntrophy --- e-pili --- adhesion protein --- photosynthetic symbionts --- large multiheme cytochrome --- metagenomic binning --- genomes of photosynthetic bacteria --- glycine betaine biosynthesis --- ectoine biosynthesis --- osmotic adaptation --- phylogeny of osmolyte biosynthesis --- filamentous anoxygenic phototroph --- microbial mats --- hot springs --- metatranscriptomics --- energy metabolism --- carbon fixation --- aerobic anoxygenic phototrophic bacteria --- bacteriochlorophyll a --- photosynthesis genes --- rhodopsin --- Sphingomonadaceae --- aerobic anoxygenic phototrophs --- siderophore --- metallophore --- CAS assay --- Chromocurvus halotolerans strain EG19
Choose an application
Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.
Research & information: general --- Biology, life sciences --- CO dehydrogenase --- dihydrogen --- hydrogenase --- quantum/classical modeling --- density functional theory --- metal-dithiolene --- pyranopterin molybdenum enzymes --- fold-angle --- tungsten enzymes --- electronic structure --- pseudo-Jahn-Teller effect --- thione --- molybdenum cofactor --- Moco --- mixed-valence complex --- dithiolene ligand --- tetra-nuclear nickel complex --- X-ray structure --- magnetic moment --- formate hydrogenlyase --- hydrogen metabolism --- energy conservation --- MRP (multiple resistance and pH)-type Na+/H+ antiporter --- CCCP-carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA-5-(N-ethyl-N-isopropyl)-amiloride --- nicotinamide adenine dinucleotide (NADH) --- electron transfer --- enzyme kinetics --- enzyme structure --- formate dehydrogenase --- carbon assimilation --- Moco biosynthesis --- Fe-S cluster assembly --- l-cysteine desulfurase --- ISC --- SUF --- NIF --- iron --- molybdenum --- sulfur --- tungsten cofactor --- aldehyde:ferredoxin oxidoreductase --- benzoyl-CoA reductase --- acetylene hydratase --- [Fe]-hydrogenase --- FeGP cofactor --- guanylylpyridinol --- conformational changes --- X-ray crystallography --- iron-sulfur cluster --- persulfide --- metallocofactor --- frataxin --- Friedreich's ataxia
Listing 1 - 7 of 7 |
Sort by
|