Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

FARO (1)

UGent (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2022 (1)

2011 (1)

Listing 1 - 2 of 2
Sort by

Book
Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid
Author:
ISBN: 3036557709 3036557695 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint presents various aspects of the future grid, which is the next generation of the electrical grid and will enable the smart integration of conventional, renewable, and distributed power generation, energy storage, transmission and distribution, and demand management. Renewable energy is crucial in transitioning to a less carbon-intensive economy and a more sustainable energy system. The high penetration and uncertain power outputs of renewable energy pose great challenges to the stable operation of energy systems. The deployment of the smart grid is revolutionary, and also imperative around the world. It involves and deals with multidisciplinary fields such as energy sources, control systems, communications, computational generation, transmission, distribution, customer operations, markets, and service providers. Smart grids are emerging in both developed and developing countries, with the aim of achieving a reliable and secure electricity supply. Smart grids will eventually require standards, policy, and a regulatory framework for successful implementation. This reprint addresses the emerging and advanced green energy technologies for a sustainable and resilient future grid, and provides a platform to enhance interdisciplinary research and share the most recent ideas.

Keywords

Technology: general issues --- History of engineering & technology --- islanded mode --- microgrid --- decentralized control --- robust tracking --- invariant set --- thermal energy storage --- parabolic dish --- latent heat --- phase change material --- heat transfer fluid --- bio-inspired algorithms --- wireless sensor network --- genetic algorithm --- particle swarm optimization --- advanced metering infrastructure --- blockchain --- Ethereum --- isolated DC–DC converter --- photovoltaics --- LLC resonant converter --- dual-bridge --- wide voltage range --- power optimizer --- coordinated control --- vehicle-to-grid --- primary frequency control --- secondary frequency control --- state of charge --- decentralized --- Simulink model --- dimensionality reduction --- simple linear regression --- multiple linear regression --- polynomial regression --- load forecasting --- VSC (voltage source converter) --- PLL (Phase-Locked Loop) --- weak grid --- small signal stability --- eigenvalues --- demand-side management --- low-power consumer electronic appliances --- low-voltage distribution system --- non-intrusive identification of appliance usage patterns --- power quality --- smart home --- true power factor --- total harmonic distortion --- renewable energy sources --- energy management system --- communication technologies --- microgrid standards --- third-order sliding mode control --- asynchronous generators --- variable speed dual-rotor wind turbine --- direct field-oriented control --- integral-proportional --- transformer --- internal fault currents --- magnetic inrush currents --- extended Kalman filter (EKF) algorithm --- harmonic estimation --- DC microgrid --- fault --- cluster --- DC/DC converter --- fault current limiter (FCL) --- multi-objective --- renewable energy --- profit-based scheduling --- Equilibrium Optimizer --- smart grid --- campus microgrid --- batteries --- prosumer market --- distributed generation --- renewable energy resources --- energy storage system --- distributed energy resources --- demand response --- load clustering techniques --- sizing methodologies --- digital signal processing --- green buildings --- spectral analysis --- spectral kurtosis --- life-cycle cost --- optimal scheduling --- reinforcement learning --- enabling technologies --- energy community --- smart meter --- nanogrid --- platform --- power cloud --- n/a --- isolated DC-DC converter


Book
Stability and Control of Large-Scale Dynamical Systems
Authors: ---
ISBN: 9780691153469 0691153469 9786613379719 1400842662 1283379716 9781400842667 9781283379717 Year: 2011 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynamical systems are strongly interconnected and consist of interacting subsystems exchanging matter, energy, or information with the environment. The sheer size, or dimensionality, of these systems necessitates decentralized analysis and control system synthesis methods for their analysis and design. Written in a theorem-proof format with examples to illustrate new concepts, this book addresses continuous-time, discrete-time, and hybrid large-scale systems. It develops finite-time stability and finite-time decentralized stabilization, thermodynamic modeling, maximum entropy control, and energy-based decentralized control. This book will interest applied mathematicians, dynamical systems theorists, control theorists, and engineers, and anyone seeking a fundamental and comprehensive understanding of large-scale interconnected dynamical systems and control.

Keywords

Lyapunov stability --- Energy dissipation --- Dynamics --- Large scale systems --- Information Technology --- General and Others --- Lyapunov stability. --- Energy dissipation. --- Dynamics. --- Large scale systems. --- Systems, Large scale --- Dynamical systems --- Kinetics --- Liapunov stability --- Ljapunov stability --- Degradation, Energy --- Dissipation (Physics) --- Energy degradation --- Energy losses --- Losses, Energy --- Engineering systems --- System analysis --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Control theory --- Stability --- Clausius-type inequality. --- KalmanЙakubovichАopov conditions. --- KalmanЙakubovichАopov equations. --- KrasovskiiЌaSalle theorem. --- asymptotic stabilizability. --- combustion processes. --- comparison system. --- compartmental dynamical system theory. --- compartmental dynamical system. --- control Lyapunov function. --- control design. --- control signal. --- control vector Lyapunov function. --- convergence. --- coordination control. --- decentralized affine. --- decentralized control. --- decentralized controller. --- decentralized finite-time stabilizer. --- discrete-time dynamical system. --- dissipativity theory. --- dynamical system. --- ectropy. --- energy conservation. --- energy dissipation. --- energy equipartition. --- energy flow. --- entropy. --- feedback control law. --- feedback interconnection stability. --- feedback stabilizer. --- finite-time stability. --- finite-time stabilization. --- gain margin. --- hybrid closed-loop system. --- hybrid decentralized controller. --- hybrid dynamic controller. --- hybrid finite-time stabilizing controller. --- hybrid vector comparison system. --- hybrid vector dissipation inequality. --- impulsive differential equations. --- impulsive dynamical system. --- interconnected dynamical system. --- large-scale dynamical system. --- law of thermodynamics. --- linear energy exchange. --- maximum entropy control. --- multiagent interconnected system. --- multiagent systems. --- multivehicle coordinated motion control. --- nonconservation of ectropy. --- nonconservation of entropy. --- nonlinear dynamical system. --- optimality. --- plant energy. --- scalar Lyapunov function. --- sector margin. --- semistable dissipation matrix. --- stability analysis. --- stability theory. --- stability. --- state space. --- subsystem decomposition. --- subsystem energy. --- thermoacoustic instabilities. --- thermodynamic modeling. --- time-invariant set. --- time-varying set. --- vector Lyapunov function. --- vector available storage. --- vector comparison system. --- vector dissipation inequality. --- vector dissipative system. --- vector dissipativity theory. --- vector dissipativity. --- vector field. --- vector hybrid supply rate. --- vector lossless system. --- vector required supply. --- vector storage function. --- vector supply rate.

Listing 1 - 2 of 2
Sort by