Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2020 (1)

Listing 1 - 4 of 4
Sort by

Book
Preclinical Evaluation of Lipid-Based Nanosystems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area.

Keywords

Technology: general issues --- nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose --- nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose


Book
Transmucosal Absorption Enhancers in the Drug Delivery Field
Authors: --- ---
ISBN: 3039218492 3039218484 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Development of strategies to assist the movement of poorly permeable molecules across biological barriers has long been the goal of drug delivery science. In the last three decades, there has been an exponential increase in advanced drug delivery systems that aim to address this issue. However, most proprietary delivery technologies that have progressed to clinical development are based on permeation enhancers (PEs) that have a history of safe use in man. This Special Issue entitled “Transmucosal Absorption Enhancers in the Drug Delivery Field” aims to present the current state-of-the-art in the application of PEs to improve drug absorption. Emphasis is placed on identification of novel permeation enhancers, mechanisms of barrier alteration, physicochemical properties of PEs that contribute to optimal enhancement action, new delivery models to assess PEs, studies assessing safety of PEs, approaches to assist translation of PEs into effective oral, nasal, ocular and vaginal dosage forms and combining PEs with other delivery strategies.

Keywords

chitosan --- intestinal epithelial cells --- ocular delivery --- amphiphilic polymers --- cornea --- tight junction modulator --- cyclodextrin --- permeability --- gemini surfactant --- transferrin --- compound 48/80 --- epithelial permeability --- cervicovaginal tumors --- nanoparticles --- confocal laser scanning microscopy --- safety --- formulation --- salcaprozate sodium --- intestinal absorption --- FITC-dextran --- curcumin --- block copolymers --- nasal vaccination --- whole leaf --- brush border --- ocular drug delivery --- vaccine adjuvant --- nanoparticle --- nasal delivery --- efflux --- permeation enhancers --- absorption enhancers --- nose to brain delivery --- small intestine --- epithelium --- CNS disorders --- absorption modifying excipients --- insulin --- absorption enhancer --- gel --- intestinal delivery --- thermogel system --- Caco-2 --- biocompatibility studies --- absorption enhancement --- man --- PN159 --- poorly absorbed drug --- tryptophan --- tight junction --- oral macromolecule delivery --- penetration enhancer --- intestinal permeation enhancers --- nanocrystals --- simvastatin --- nanomedicine --- enterocyte --- N-dodecyl-?-D-maltoside (DDM) --- cell-penetrating peptide --- quaternization --- KLAL --- nasal --- nasal permeability --- transmucosal drug delivery --- Caco-2 cells --- mast cell activator --- penetration enhancers --- drug delivery --- nose-to-brain --- bioenhancer --- polymeric micelles --- mucoadhesion --- cell-penetrating peptide (CPP) --- simulated intestinal fluid --- vaginal delivery --- nasal formulation --- pharmacokinetic interaction --- sodium caprate --- clinical trial --- transmucosal permeation --- drug absorption enhancer --- sugar-based surfactants --- nanocapsules --- imatinib --- teriparatide --- osteoporosis --- hydrophobization --- F-actin --- combined microsphere --- transepithelial electrical resistance --- oral delivery --- ocular conditions --- metabolism --- antimicrobial peptide --- permeation enhancer --- drug administration --- antiepileptic drug --- amino acid --- in vivo studies --- sodium cholate (NaC) --- epithelial transport --- preclinical --- nose to brain transport --- pharmacokinetics --- chitosan derivatives --- ophthalmology --- tight junctions --- sheep --- cationic functionalization --- GLP-1 --- pulmonary --- and liposome --- cytochrome P450 --- claudin --- P-glycoprotein --- in situ hydrogel --- mucoadhesiveness --- PTH 1-34 --- Aloe vera --- oral peptides


Book
Preclinical Evaluation of Lipid-Based Nanosystems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area.

Keywords

Technology: general issues --- nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose --- n/a


Book
Preclinical Evaluation of Lipid-Based Nanosystems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area.

Keywords

nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose --- n/a

Listing 1 - 4 of 4
Sort by