Listing 1 - 10 of 24 | << page >> |
Sort by
|
Choose an application
Internal waves --- Sound --- Transmission
Choose an application
Choose an application
Thermoclines (Oceanography) --- Thermoclines. --- Internal waves.
Choose an application
Choose an application
Internal waves --- Ocean temperature --- Thermoclines (Oceanography)
Choose an application
Choose an application
The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.
Internal waves --- Gravity waves --- Fluid dynamics --- Earth & Environmental Sciences --- Marine Science --- Dynamics --- Fluid mechanics --- Hydrodynamics --- Waves --- Boundary waves (Oceanography) --- Waves, Internal --- Ocean waves --- Internal waves. --- Gravity waves. --- Fluid dynamics.
Choose an application
Internal wave dynamics in lakes (and oceans) is an important physical component of geophysical fluid mechanics of ‘quiescent’ water bodies of the Globe. The formation of internal waves requires seasonal stratification of the water bodies and generation by (primarily) wind forces. Because they propagate in basins of variable depth, a generated wave field often experiences transformation from large basin-wide scales to smaller scales. As long as this fission is hydrodynamically stable, nothing dramatic will happen. However, if vertical density gradients and shearing of the horizontal currents in the metalimnion combine to a Richardson number sufficiently small (< ¼), the light epilimnion water mixes with the water of the hypolimnion, giving rise to vertical diffusion of substances into lower depths. This meromixis is chiefly responsible for the ventilation of the deeper waters and the homogenization of the water through the lake depth. These processes are mainly formed as a result of the physical conditions, but they play biologically an important role in the trophicational state of the lake.
Internal waves. --- Lakes. --- Internal waves --- Lakes --- Geography --- Physics --- Earth & Environmental Sciences --- Physical Sciences & Mathematics --- Physical Geography --- Cosmic Physics --- Marine Science --- Lochs --- Boundary waves (Oceanography) --- Waves, Internal --- Earth sciences. --- Geophysics. --- Mathematical physics. --- Mechanics. --- Marine sciences. --- Freshwater. --- Earth Sciences. --- Geophysics/Geodesy. --- Marine & Freshwater Sciences. --- Mathematical Physics. --- Bodies of water --- Ocean waves --- Physical geography. --- Marine Sciences. --- Classical Mechanics. --- Classical mechanics --- Newtonian mechanics --- Dynamics --- Quantum theory --- Ocean sciences --- Aquatic sciences --- Physical mathematics --- Fresh waters --- Freshwater --- Freshwaters --- Inland water --- Inland waters --- Water --- Geological physics --- Terrestrial physics --- Earth sciences --- Mathematics
Choose an application
Oceanic internal waves (IWs) at frequencies from local inertial (e.g., near-inertial internal waves) to buoyancy frequencies (nonlinear internal waves or internal solitary waves), sometimes including diurnal and semidiurnal tidal frequencies, play an important role in redistributing heat, momentum, materials, and energy via turbulent mixing. IWs are found ubiquitously in many seas, including East Asian marginal seas (Indonesian Seas, South China Sea, East China Sea, Yellow Sea, and East Sea or Japan Sea), significantly affecting underwater acoustics, coastal and offshore engineering, submarine navigation, biological productivity, and the local and global climate. Despite decades of study on the IWs in some regions, our understanding of the IWs in the East Asian marginal seas is still in a primitive state and the mechanisms underlying every stage (generation, propagation, evolution, and dissipation) of IWs are not always clear. This Special Issue includes papers related to all fields of both low- and high-frequency IW studies in the specified region, including remote sensing, in situ observations, theories, and numerical models.
Technology: general issues --- History of engineering & technology --- near-inertial waves --- typhoon Megi --- South China Sea --- hybrid coordinate ocean model reanalysis results --- Luzon Strait --- baroclinic tides --- stratification variability --- MITgcm --- nonlinear internal wave --- propagating speed --- propagating direction --- underway observation --- moored observation --- East China Sea --- internal solitary wave --- shipboard observation --- extreme current velocity --- wave breaking --- trapped core --- near-inertial internal waves --- nonseasonal variability --- mesoscale flow field --- relative vorticity --- Okubo-Weiss parameter --- subsurface mooring --- southwestern East Sea --- Japan Sea --- internal waves --- Hainan Island --- KRI nanggala-402 submarine wreck --- Lombok Strait --- Bali Sea --- internal solitary waves --- remote sensing images --- underwater noise --- flow noise --- vortex-induced vibration --- the South China Sea --- n/a
Choose an application
Oceanic internal waves (IWs) at frequencies from local inertial (e.g., near-inertial internal waves) to buoyancy frequencies (nonlinear internal waves or internal solitary waves), sometimes including diurnal and semidiurnal tidal frequencies, play an important role in redistributing heat, momentum, materials, and energy via turbulent mixing. IWs are found ubiquitously in many seas, including East Asian marginal seas (Indonesian Seas, South China Sea, East China Sea, Yellow Sea, and East Sea or Japan Sea), significantly affecting underwater acoustics, coastal and offshore engineering, submarine navigation, biological productivity, and the local and global climate. Despite decades of study on the IWs in some regions, our understanding of the IWs in the East Asian marginal seas is still in a primitive state and the mechanisms underlying every stage (generation, propagation, evolution, and dissipation) of IWs are not always clear. This Special Issue includes papers related to all fields of both low- and high-frequency IW studies in the specified region, including remote sensing, in situ observations, theories, and numerical models.
near-inertial waves --- typhoon Megi --- South China Sea --- hybrid coordinate ocean model reanalysis results --- Luzon Strait --- baroclinic tides --- stratification variability --- MITgcm --- nonlinear internal wave --- propagating speed --- propagating direction --- underway observation --- moored observation --- East China Sea --- internal solitary wave --- shipboard observation --- extreme current velocity --- wave breaking --- trapped core --- near-inertial internal waves --- nonseasonal variability --- mesoscale flow field --- relative vorticity --- Okubo-Weiss parameter --- subsurface mooring --- southwestern East Sea --- Japan Sea --- internal waves --- Hainan Island --- KRI nanggala-402 submarine wreck --- Lombok Strait --- Bali Sea --- internal solitary waves --- remote sensing images --- underwater noise --- flow noise --- vortex-induced vibration --- the South China Sea --- n/a
Listing 1 - 10 of 24 | << page >> |
Sort by
|