Listing 1 - 7 of 7 |
Sort by
|
Choose an application
539.319 --- Residual stresses --- -Thermal stresses --- -Thermal-expansion stresses --- Expansion (Heat) --- Expansion of solids --- Strains and stresses --- Thermoelasticity --- Cooling stresses --- Mechanical prestressing --- Metals --- Welding stresses --- Deformations (Mechanics) --- Stored energy of cold work --- Strength of materials --- Internal stresses in a body due to processing, mode of use etc. Stress distribution. Shrinkage stresses --- Congresses --- Fatigue --- Heat treatment --- -Internal stresses in a body due to processing, mode of use etc. Stress distribution. Shrinkage stresses --- 539.319 Internal stresses in a body due to processing, mode of use etc. Stress distribution. Shrinkage stresses --- -539.319 Internal stresses in a body due to processing, mode of use etc. Stress distribution. Shrinkage stresses --- Thermal-expansion stresses --- Thermal stresses --- Stress analysis
Choose an application
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
Technology: general issues --- crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression --- crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression
Choose an application
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
Technology: general issues --- crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression
Choose an application
The present collection of articles focuses on the mechanical strength properties at micro- and nanoscale dimensions of body-centered cubic, face-centered cubic and hexagonal close-packed crystal structures. The advent of micro-pillar test specimens is shown to provide a new dimensional scale for the investigation of crystal deformation properties. The ultra-small dimensional scale at which these properties are measured is shown to approach the atomic-scale level at which model dislocation mechanics descriptions of crystal slip and deformation twinning behaviors are proposed to be operative, including the achievement of atomic force microscopic measurements of dislocation pile-up interactions with crystal grain boundaries or with hard surface coatings. A special advantage of engineering designs made at such small crystal and polycrystalline dimensions is the achievement of an approximate order-of-magnitude increase in mechanical strength levels. Reasonable extrapolation of macro-scale continuum mechanics descriptions of crystal strength properties at micro- to nano-indentation hardness measurements are demonstrated, in addition to reports on persistent slip band observations and fatigue cracking behaviors. High-entropy alloy, superalloy and energetic crystal properties are reported along with descriptions of deformation rate sensitivities, grain boundary structures, nano-cutting, void nucleation/growth micromechanics and micro-composite electrical properties.
crystal strength --- micro-crystals --- nano-crystals --- nano-polycrystals --- nano-wires --- whiskers --- pillars --- dislocations --- hardness --- crystal size dependencies --- fracture --- strain rate sensitivity --- temperature effect --- indentation size effect --- theoretical model --- nano-indentation --- crack growth --- dislocation models --- pile-ups --- kitagawa-takahashi diagram --- fracture mechanics --- internal stresses --- molecular dynamics simulations --- BCC Fe nanowires --- twin boundaries --- de-twinning --- micromechanical testing --- micro-pillar --- bi-crystal --- discrete dislocation pile-up --- grain boundary --- free surface --- anisotropic elasticity --- crystallographic slip --- molecular dynamics --- nanocutting --- iron --- cutting theory --- ab initio calculations --- hydrogen embrittlement --- cohesive strength --- multiaxial loading --- strain rate --- molecular dynamics simulation --- activation volume --- grain growth --- indentation creep --- size effect --- geometrically necessary dislocations --- FeCrAl --- micropillar --- dislocation --- strain hardening --- crystal plasticity simulations --- persistent slip band --- surface hard coating --- fatigue crack initiation --- fatigue --- cyclic deformation --- internal stress --- copper single crystal --- rafting behavior --- phase-field simulation --- crystal plasticity theory --- mechanical property --- ultrafine-grained materials --- intermetallic compounds --- B2 phase --- strain hardening behavior --- synchrotron radiation X-ray diffraction --- HMX --- elastic properties --- linear complexions --- strength --- lattice distortive transformations --- dislocation emission --- grain boundaries --- nanomaterials --- Hall-Petch relation --- metals and alloys --- interfacial delamination --- nucleation --- void formation --- cracking --- alloys --- nanocrystalline --- thermal stability --- IN718 alloy --- dislocation plasticity --- twinning --- miniaturised testing --- in situ electron microscopy --- magnesium --- anode --- tin sulfide --- lithium ion battery --- conversion reaction --- nanoflower --- rapid solidification --- compression
Choose an application
Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.
History of engineering & technology --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q& --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q& --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer
Choose an application
Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.
History of engineering & technology --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q& --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer
Choose an application
Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.
Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q& --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer
Listing 1 - 7 of 7 |
Sort by
|