Listing 1 - 6 of 6 |
Sort by
|
Choose an application
In this Special Issue, we have several papers related to fuel-cell-based cogeneration systems; the management and control of fuel cell systems; the analysis, simulation, and operation of different types of fuel cells; modelling and online experimental validation; and the environment assessment of cathode materials in lithium-ion battery energy generation systems. A paper which gives a comprehensive review with technical guidelines for the design and operation of fuel cells, especially in a cogeneration system setup, which can be an important source of references for the optimal design and operation of various types of fuel cells in cogeneration systems, can also be found in this Special Issue.
History of engineering & technology --- LIBs --- environmental sustainability --- cathode material --- LCA --- wind energy --- fuel cell --- IM --- induction generator --- hybrid system --- mine blast optimizer --- solid oxide fuel cell --- robust model predictive control --- off-line calculation --- control synthesis --- review --- cogeneration --- optimal design --- guidelines --- SOFC --- simulation --- internal reforming --- anode oxidation --- carbon formation --- direct methanol fuel cell --- methanol crossover --- power density --- catalyst --- membrane electrode assembly --- Colebrook equation --- fuel cells --- flow friction factor --- open-cathode --- pressure drop --- symbolic regression --- numerically stabile solution --- roughness --- LIBs --- environmental sustainability --- cathode material --- LCA --- wind energy --- fuel cell --- IM --- induction generator --- hybrid system --- mine blast optimizer --- solid oxide fuel cell --- robust model predictive control --- off-line calculation --- control synthesis --- review --- cogeneration --- optimal design --- guidelines --- SOFC --- simulation --- internal reforming --- anode oxidation --- carbon formation --- direct methanol fuel cell --- methanol crossover --- power density --- catalyst --- membrane electrode assembly --- Colebrook equation --- fuel cells --- flow friction factor --- open-cathode --- pressure drop --- symbolic regression --- numerically stabile solution --- roughness
Choose an application
In this Special Issue, we have several papers related to fuel-cell-based cogeneration systems; the management and control of fuel cell systems; the analysis, simulation, and operation of different types of fuel cells; modelling and online experimental validation; and the environment assessment of cathode materials in lithium-ion battery energy generation systems. A paper which gives a comprehensive review with technical guidelines for the design and operation of fuel cells, especially in a cogeneration system setup, which can be an important source of references for the optimal design and operation of various types of fuel cells in cogeneration systems, can also be found in this Special Issue.
History of engineering & technology --- LIBs --- environmental sustainability --- cathode material --- LCA --- wind energy --- fuel cell --- IM --- induction generator --- hybrid system --- mine blast optimizer --- solid oxide fuel cell --- robust model predictive control --- off-line calculation --- control synthesis --- review --- cogeneration --- optimal design --- guidelines --- SOFC --- simulation --- internal reforming --- anode oxidation --- carbon formation --- direct methanol fuel cell --- methanol crossover --- power density --- catalyst --- membrane electrode assembly --- Colebrook equation --- fuel cells --- flow friction factor --- open-cathode --- pressure drop --- symbolic regression --- numerically stabile solution --- roughness --- n/a
Choose an application
In this Special Issue, we have several papers related to fuel-cell-based cogeneration systems; the management and control of fuel cell systems; the analysis, simulation, and operation of different types of fuel cells; modelling and online experimental validation; and the environment assessment of cathode materials in lithium-ion battery energy generation systems. A paper which gives a comprehensive review with technical guidelines for the design and operation of fuel cells, especially in a cogeneration system setup, which can be an important source of references for the optimal design and operation of various types of fuel cells in cogeneration systems, can also be found in this Special Issue.
LIBs --- environmental sustainability --- cathode material --- LCA --- wind energy --- fuel cell --- IM --- induction generator --- hybrid system --- mine blast optimizer --- solid oxide fuel cell --- robust model predictive control --- off-line calculation --- control synthesis --- review --- cogeneration --- optimal design --- guidelines --- SOFC --- simulation --- internal reforming --- anode oxidation --- carbon formation --- direct methanol fuel cell --- methanol crossover --- power density --- catalyst --- membrane electrode assembly --- Colebrook equation --- fuel cells --- flow friction factor --- open-cathode --- pressure drop --- symbolic regression --- numerically stabile solution --- roughness --- n/a
Choose an application
Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.
Research & information: general --- Technology: general issues --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization
Choose an application
Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.
polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization
Choose an application
Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.
Research & information: general --- Technology: general issues --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization --- polymer electrolyte fuel cell --- cyclic current profile --- transient behavior --- pressure drop --- Ohmic resistance --- solid oxide fuel cells (SOFCs) --- ionic conductivity --- Raman spectroscopy --- powder X-ray diffraction --- microbial fuel cell --- low-cost ceramics --- separator --- membrane --- porosity --- pore size --- water absorption --- mercury intrusion --- raman spectroscopy --- powder x-ray diffraction --- doped ceria --- solid oxides fuel cells --- Sm-doped ceria --- high pressure X-ray powder diffraction --- diamond anvil cell --- equation of state --- Rietveld refinement --- SOFC --- reliability --- contamination --- salt --- oxygen starvation --- concentration polarization --- fuel cell application --- microfluidic fuel cell --- power supply --- soft drinks --- hydrogen production --- alkaline water electrolysis --- two-phases flow --- CFD --- two-phase process --- BSCF --- SOEC --- rSOC --- anodic overpotential --- impedance spectroscopy --- sealants --- glass-ceramic --- joining --- CH4 internal reforming --- solid oxide fuel cell --- 2D local control --- cell design optimization --- active site degradation --- tape casting process --- open circuit voltage --- activation energy --- power density --- IT-SOFC --- PEM fuel cell --- useful water --- hydrogen consumption scenarios --- modified fuel utilization
Listing 1 - 6 of 6 |
Sort by
|