Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULB (5)

ULiège (5)

VIVES (5)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2021 (3)

2020 (3)

2019 (3)

Listing 1 - 9 of 9
Sort by

Book
Cement-Based Composites : Advancements in Development and Characterization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Cement-Based Composites: Advancements in Development and Characterization” presents the latest research and advances in the field of cement-based composites. This Special Issue covers a variety of experimental studies related to fiber-reinforced, photocatalytic, lightweight, and sustainable cement-based composites. Moreover, simulation studies are presented in this Special Issue to provide fundamental knowledge of designing and optimizing the properties of cementitious composites. The presented publications in this Special Issue show the most recent technology in the cement-based composite field.

Keywords

History of engineering & technology --- lightweight cement paste --- air entraining agents --- hollow microspheres --- aluminum powder --- pores --- micro-CT --- thermal insulation --- compressive strength --- photocatalysis --- core-shell structure --- TiO2/SiO2 composite nanoparticles --- cement-based materials --- sustainability --- hemp --- sound absorption --- thermal conductivity --- fire characteristics --- mechanical properties --- microscopy --- thermal analysis --- X-ray diffraction --- SCC-SFR --- chlorides --- diffusion --- concrete --- fiber-reinforced cemented clay --- unconfined compression strength --- fiber content --- composite cement content --- curing time --- steel fiber --- MgO expansive agent --- split tensile strength --- chloride diffusion resistance --- porosity --- interfacial transition zone --- bond strength --- high performance concrete --- reinforcing steel bar --- basalt fibre --- inhibit --- alkali-carbonate reaction --- fly ash --- expansion --- mechanism --- graphite carbon nitride --- silica --- visible light catalysis --- cement --- Bayesian updating --- spatial randomness --- uncertainty --- correlation distance --- stochastic field --- Interfacial transition zone --- quick-converting track concrete --- aggregate surface condition --- railway ballast --- fiber-reinforced concrete --- mechanical characteristics --- three-point bending test --- fracture energy --- cement-based composite --- experimental studies --- numerical simulation


Book
Cement-Based Composites : Advancements in Development and Characterization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Cement-Based Composites: Advancements in Development and Characterization” presents the latest research and advances in the field of cement-based composites. This Special Issue covers a variety of experimental studies related to fiber-reinforced, photocatalytic, lightweight, and sustainable cement-based composites. Moreover, simulation studies are presented in this Special Issue to provide fundamental knowledge of designing and optimizing the properties of cementitious composites. The presented publications in this Special Issue show the most recent technology in the cement-based composite field.


Book
Cement-Based Composites : Advancements in Development and Characterization
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Cement-Based Composites: Advancements in Development and Characterization” presents the latest research and advances in the field of cement-based composites. This Special Issue covers a variety of experimental studies related to fiber-reinforced, photocatalytic, lightweight, and sustainable cement-based composites. Moreover, simulation studies are presented in this Special Issue to provide fundamental knowledge of designing and optimizing the properties of cementitious composites. The presented publications in this Special Issue show the most recent technology in the cement-based composite field.

Keywords

History of engineering & technology --- lightweight cement paste --- air entraining agents --- hollow microspheres --- aluminum powder --- pores --- micro-CT --- thermal insulation --- compressive strength --- photocatalysis --- core-shell structure --- TiO2/SiO2 composite nanoparticles --- cement-based materials --- sustainability --- hemp --- sound absorption --- thermal conductivity --- fire characteristics --- mechanical properties --- microscopy --- thermal analysis --- X-ray diffraction --- SCC-SFR --- chlorides --- diffusion --- concrete --- fiber-reinforced cemented clay --- unconfined compression strength --- fiber content --- composite cement content --- curing time --- steel fiber --- MgO expansive agent --- split tensile strength --- chloride diffusion resistance --- porosity --- interfacial transition zone --- bond strength --- high performance concrete --- reinforcing steel bar --- basalt fibre --- inhibit --- alkali-carbonate reaction --- fly ash --- expansion --- mechanism --- graphite carbon nitride --- silica --- visible light catalysis --- cement --- Bayesian updating --- spatial randomness --- uncertainty --- correlation distance --- stochastic field --- Interfacial transition zone --- quick-converting track concrete --- aggregate surface condition --- railway ballast --- fiber-reinforced concrete --- mechanical characteristics --- three-point bending test --- fracture energy --- cement-based composite --- experimental studies --- numerical simulation --- lightweight cement paste --- air entraining agents --- hollow microspheres --- aluminum powder --- pores --- micro-CT --- thermal insulation --- compressive strength --- photocatalysis --- core-shell structure --- TiO2/SiO2 composite nanoparticles --- cement-based materials --- sustainability --- hemp --- sound absorption --- thermal conductivity --- fire characteristics --- mechanical properties --- microscopy --- thermal analysis --- X-ray diffraction --- SCC-SFR --- chlorides --- diffusion --- concrete --- fiber-reinforced cemented clay --- unconfined compression strength --- fiber content --- composite cement content --- curing time --- steel fiber --- MgO expansive agent --- split tensile strength --- chloride diffusion resistance --- porosity --- interfacial transition zone --- bond strength --- high performance concrete --- reinforcing steel bar --- basalt fibre --- inhibit --- alkali-carbonate reaction --- fly ash --- expansion --- mechanism --- graphite carbon nitride --- silica --- visible light catalysis --- cement --- Bayesian updating --- spatial randomness --- uncertainty --- correlation distance --- stochastic field --- Interfacial transition zone --- quick-converting track concrete --- aggregate surface condition --- railway ballast --- fiber-reinforced concrete --- mechanical characteristics --- three-point bending test --- fracture energy --- cement-based composite --- experimental studies --- numerical simulation


Book
Properties and Novel Applications of Recycled Aggregates
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aggregates used in construction are the natural resource consumed the most in the world after air and water. Due to overexploitation, all environmental laws reward the use of recycled materials to guarantee the reduction of consumption of natural aggregates. The use of reclaimed aggregates, reused aggregates, and recycled aggregates increases sustainability in construction activities. Today, they are strategic materials in the manufacturing of green concrete and mortars and as road construction eco-efficient materials. In addition, the use of recycled aggregates from industrial or mining byproducts presents great potential in construction activities as recycled aggregates and/or supplementary cementitious materials. This Special Issue is open to new experiences in construction materials and/or works made with recycled aggregates.


Book
Properties and Novel Applications of Recycled Aggregates
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aggregates used in construction are the natural resource consumed the most in the world after air and water. Due to overexploitation, all environmental laws reward the use of recycled materials to guarantee the reduction of consumption of natural aggregates. The use of reclaimed aggregates, reused aggregates, and recycled aggregates increases sustainability in construction activities. Today, they are strategic materials in the manufacturing of green concrete and mortars and as road construction eco-efficient materials. In addition, the use of recycled aggregates from industrial or mining byproducts presents great potential in construction activities as recycled aggregates and/or supplementary cementitious materials. This Special Issue is open to new experiences in construction materials and/or works made with recycled aggregates.


Book
Properties and Novel Applications of Recycled Aggregates
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aggregates used in construction are the natural resource consumed the most in the world after air and water. Due to overexploitation, all environmental laws reward the use of recycled materials to guarantee the reduction of consumption of natural aggregates. The use of reclaimed aggregates, reused aggregates, and recycled aggregates increases sustainability in construction activities. Today, they are strategic materials in the manufacturing of green concrete and mortars and as road construction eco-efficient materials. In addition, the use of recycled aggregates from industrial or mining byproducts presents great potential in construction activities as recycled aggregates and/or supplementary cementitious materials. This Special Issue is open to new experiences in construction materials and/or works made with recycled aggregates.

Keywords

Research & information: general --- steel reinforced concrete --- polarization --- coal bottom ash --- coal fly ash --- waste --- aggregates --- fines processing --- porosity --- recycled aggregates --- permeable concrete --- interfacial transition zone --- image analysis --- porosimetry mercury intrusion --- lime treatment --- modified Proctor --- CBR --- subbase --- road construction --- concrete --- slag --- valorisation --- cement --- circular economy --- statistical analysis --- estimation --- permeability --- constant head method --- estimation coefficient of permeability --- recycled concrete aggregate --- recycled aggregate --- polyacrylonitrile microfibers --- electrospinning --- durability --- carbonation --- 3D BFEM --- recycled aggregate concrete --- numerical simulation --- failure pattern --- cathode ray tube glass --- civil infrastructures --- cement-treated materials --- self-compacting concrete --- coarse recycled aggregate --- sustainable concrete --- construction and demolition waste management plant --- mercury intrusion porosimetry --- SEM observation --- new paste --- compressive strength --- construction and demolition waste --- recycled fine aggregate --- mortars --- sustainable construction --- mining waste --- ultra-high performance fibres reinforced concrete --- flexural strength --- seaport loading platform --- structural granular layers --- steel reinforced concrete --- polarization --- coal bottom ash --- coal fly ash --- waste --- aggregates --- fines processing --- porosity --- recycled aggregates --- permeable concrete --- interfacial transition zone --- image analysis --- porosimetry mercury intrusion --- lime treatment --- modified Proctor --- CBR --- subbase --- road construction --- concrete --- slag --- valorisation --- cement --- circular economy --- statistical analysis --- estimation --- permeability --- constant head method --- estimation coefficient of permeability --- recycled concrete aggregate --- recycled aggregate --- polyacrylonitrile microfibers --- electrospinning --- durability --- carbonation --- 3D BFEM --- recycled aggregate concrete --- numerical simulation --- failure pattern --- cathode ray tube glass --- civil infrastructures --- cement-treated materials --- self-compacting concrete --- coarse recycled aggregate --- sustainable concrete --- construction and demolition waste management plant --- mercury intrusion porosimetry --- SEM observation --- new paste --- compressive strength --- construction and demolition waste --- recycled fine aggregate --- mortars --- sustainable construction --- mining waste --- ultra-high performance fibres reinforced concrete --- flexural strength --- seaport loading platform --- structural granular layers


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210173 3039210165 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210130 3039210122 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210157 3039210149 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance

Listing 1 - 9 of 9
Sort by