Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (4)

2020 (3)

Listing 1 - 7 of 7
Sort by

Book
Microelectrode Arrays and Application to Medical Devices
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in microfluidic devices, the mixing of species is also difficult, and unless an active mixing strategy is employed, passive diffusion is the only mechanism that causes the fluid to mix. For many applications, diffusion is considered too slow, and thus many active pumping and mixing strategies have been employed using electrokinetic methods, which utilize a variety of simple and complex microelectrode array structures. Microelectrodes have also been implemented in in vitro intracellular delivery platforms to conduct cell electroporation on chip, where a highly localized electric field on the scale of a single cell is generated to enhance the uptake of extracellular material. In addition, microelectrode arrays are utilized in different microfluidic biosensing modalities, where a higher sensitivity, selectivity, and limit-of-detection are desired. Carbon nanotube microelectrode arrays are used for DNA detection, multi-electrode array chips are used for drug discovery, and there has been an explosion of research into brain–machine interfaces, fueled by microfabricated electrode arrays, both planar and three-dimensional. The advantages associated with microelectrode arrays include small size, the ability to manufacture repeatedly and reliably tens to thousands of micro-electrodes on both rigid and flexible substrates, and their utility for both in vitro and in vivo applications. To realize their full potential, there is a need to develop and integrate microelectrode arrays to form useful medical device systems. As the field of microelectrode array research is wide, and touches many application areas, it is often difficult to locate a single source of relevant information. This Special Issue seeks to showcase research papers, short communications, and review articles, that focus on the application of microelectrode arrays in the medical device sector. Particular interest will be paid to innovative application areas that can improve existing medical devices, such as for neuromodulation and real world lab-on-a-chip applications.


Book
Micromachines for Dielectrophoresis
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

An outstanding compilation that reflects the state-of-the art on Dielectrophoresis (DEP) in 2020. Contributions include: - A novel mathematical framework to analyze particle dynamics inside a circular arc microchannel using computational modeling. - A fundamental study of the passive focusing of particles in ratchet microchannels using direct-current DEP. - A novel molecular version of the Clausius-Mossotti factor that bridges the gap between theory and experiments in DEP of proteins. - The use of titanium electrodes to rapidly enrich T. brucei parasites towards a diagnostic assay. - Leveraging induced-charge electrophoresis (ICEP) to control the direction and speed of Janus particles. - An integrated device for the isolation, retrieval, and off-chip recovery of single cells. - Feasibility of using well-established CMOS processes to fabricate DEP devices. - The use of an exponential function to drive electrowetting displays to reduce flicker and improve the static display performance. - A novel waveform to drive electrophoretic displays with improved display quality and reduced flicker intensity. - Review of how combining electrode structures, single or multiple field magnitudes and/or frequencies, as well as variations in the media suspending the particles can improve the sensitivity of DEP-based particle separations. - Improvement of dielectrophoretic particle chromatography (DPC) of latex particles by exploiting differences in both their DEP mobility and their crossover frequencies.


Book
Microelectrode Arrays and Application to Medical Devices
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in microfluidic devices, the mixing of species is also difficult, and unless an active mixing strategy is employed, passive diffusion is the only mechanism that causes the fluid to mix. For many applications, diffusion is considered too slow, and thus many active pumping and mixing strategies have been employed using electrokinetic methods, which utilize a variety of simple and complex microelectrode array structures. Microelectrodes have also been implemented in in vitro intracellular delivery platforms to conduct cell electroporation on chip, where a highly localized electric field on the scale of a single cell is generated to enhance the uptake of extracellular material. In addition, microelectrode arrays are utilized in different microfluidic biosensing modalities, where a higher sensitivity, selectivity, and limit-of-detection are desired. Carbon nanotube microelectrode arrays are used for DNA detection, multi-electrode array chips are used for drug discovery, and there has been an explosion of research into brain–machine interfaces, fueled by microfabricated electrode arrays, both planar and three-dimensional. The advantages associated with microelectrode arrays include small size, the ability to manufacture repeatedly and reliably tens to thousands of micro-electrodes on both rigid and flexible substrates, and their utility for both in vitro and in vivo applications. To realize their full potential, there is a need to develop and integrate microelectrode arrays to form useful medical device systems. As the field of microelectrode array research is wide, and touches many application areas, it is often difficult to locate a single source of relevant information. This Special Issue seeks to showcase research papers, short communications, and review articles, that focus on the application of microelectrode arrays in the medical device sector. Particular interest will be paid to innovative application areas that can improve existing medical devices, such as for neuromodulation and real world lab-on-a-chip applications.


Book
Microelectrode Arrays and Application to Medical Devices
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in microfluidic devices, the mixing of species is also difficult, and unless an active mixing strategy is employed, passive diffusion is the only mechanism that causes the fluid to mix. For many applications, diffusion is considered too slow, and thus many active pumping and mixing strategies have been employed using electrokinetic methods, which utilize a variety of simple and complex microelectrode array structures. Microelectrodes have also been implemented in in vitro intracellular delivery platforms to conduct cell electroporation on chip, where a highly localized electric field on the scale of a single cell is generated to enhance the uptake of extracellular material. In addition, microelectrode arrays are utilized in different microfluidic biosensing modalities, where a higher sensitivity, selectivity, and limit-of-detection are desired. Carbon nanotube microelectrode arrays are used for DNA detection, multi-electrode array chips are used for drug discovery, and there has been an explosion of research into brain–machine interfaces, fueled by microfabricated electrode arrays, both planar and three-dimensional. The advantages associated with microelectrode arrays include small size, the ability to manufacture repeatedly and reliably tens to thousands of micro-electrodes on both rigid and flexible substrates, and their utility for both in vitro and in vivo applications. To realize their full potential, there is a need to develop and integrate microelectrode arrays to form useful medical device systems. As the field of microelectrode array research is wide, and touches many application areas, it is often difficult to locate a single source of relevant information. This Special Issue seeks to showcase research papers, short communications, and review articles, that focus on the application of microelectrode arrays in the medical device sector. Particular interest will be paid to innovative application areas that can improve existing medical devices, such as for neuromodulation and real world lab-on-a-chip applications.


Book
Micromachines for Dielectrophoresis
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

An outstanding compilation that reflects the state-of-the art on Dielectrophoresis (DEP) in 2020. Contributions include: - A novel mathematical framework to analyze particle dynamics inside a circular arc microchannel using computational modeling. - A fundamental study of the passive focusing of particles in ratchet microchannels using direct-current DEP. - A novel molecular version of the Clausius-Mossotti factor that bridges the gap between theory and experiments in DEP of proteins. - The use of titanium electrodes to rapidly enrich T. brucei parasites towards a diagnostic assay. - Leveraging induced-charge electrophoresis (ICEP) to control the direction and speed of Janus particles. - An integrated device for the isolation, retrieval, and off-chip recovery of single cells. - Feasibility of using well-established CMOS processes to fabricate DEP devices. - The use of an exponential function to drive electrowetting displays to reduce flicker and improve the static display performance. - A novel waveform to drive electrophoretic displays with improved display quality and reduced flicker intensity. - Review of how combining electrode structures, single or multiple field magnitudes and/or frequencies, as well as variations in the media suspending the particles can improve the sensitivity of DEP-based particle separations. - Improvement of dielectrophoretic particle chromatography (DPC) of latex particles by exploiting differences in both their DEP mobility and their crossover frequencies.


Book
Biosensors for Diagnosis and Monitoring
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field.

Keywords

biosensors --- interdigitated electrodes --- impedance spectroscopy --- blood analysis --- whole-cell biosensor --- yeast surface display --- cholesterol oxidase --- glucose dehydrogenase --- electrochemical detection --- fiber optic sensor --- vital signs --- biosensor --- human body --- body temperature --- heart rate --- respiratory rate --- blood pressure --- torso scanning --- antennas --- processing algorithms --- electromagnetic imaging --- polymerase chain reaction --- COVID-19 --- electrochemical --- digital PCR --- point-of-care --- electroanalysis --- indigo dyes --- fast identification --- fingerprints --- differential pulse voltammetry --- cystatin C --- molecularly imprinted polymer --- electrochemical biosensor --- polypyrene --- multiwall carbon nanotubes --- acute kidney injury --- biomonitoring --- personalized healthcare --- sweat --- rolling circle amplification --- environmental monitoring --- heavy metals --- organic molecules --- microorganisms --- biorecognition --- diagnosis --- pathogens --- aptamers --- antibodies --- peptides --- enzymes --- DNAzymes --- peptide nucleic acids --- blood glucose monitoring --- diabetes --- non-invasive sensor --- PDMS --- vascular phantom --- glucometer --- RF sensor --- CD4+ T helper cells --- microfluidic chip --- microbeads --- wide-field optical system --- ImageJ --- graphene --- reduced graphene oxide --- electrochemistry --- electrochemical impedance spectroscopy --- DNA biosensor --- diazonium chemistry --- screen-printed electrodes --- DNA hybridization --- VOCs --- environmental --- packaging --- diagnostic --- pollution --- colorectal cancer --- KRAS --- lateral flow assay --- dipstick --- gold nanoparticles --- diagnostics --- multiplex --- point-of-care diagnostics --- REASSURED


Book
Biosensors for Diagnosis and Monitoring
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field.

Keywords

Research & information: general --- Chemistry --- Analytical chemistry --- biosensors --- interdigitated electrodes --- impedance spectroscopy --- blood analysis --- whole-cell biosensor --- yeast surface display --- cholesterol oxidase --- glucose dehydrogenase --- electrochemical detection --- fiber optic sensor --- vital signs --- biosensor --- human body --- body temperature --- heart rate --- respiratory rate --- blood pressure --- torso scanning --- antennas --- processing algorithms --- electromagnetic imaging --- polymerase chain reaction --- COVID-19 --- electrochemical --- digital PCR --- point-of-care --- electroanalysis --- indigo dyes --- fast identification --- fingerprints --- differential pulse voltammetry --- cystatin C --- molecularly imprinted polymer --- electrochemical biosensor --- polypyrene --- multiwall carbon nanotubes --- acute kidney injury --- biomonitoring --- personalized healthcare --- sweat --- rolling circle amplification --- environmental monitoring --- heavy metals --- organic molecules --- microorganisms --- biorecognition --- diagnosis --- pathogens --- aptamers --- antibodies --- peptides --- enzymes --- DNAzymes --- peptide nucleic acids --- blood glucose monitoring --- diabetes --- non-invasive sensor --- PDMS --- vascular phantom --- glucometer --- RF sensor --- CD4+ T helper cells --- microfluidic chip --- microbeads --- wide-field optical system --- ImageJ --- graphene --- reduced graphene oxide --- electrochemistry --- electrochemical impedance spectroscopy --- DNA biosensor --- diazonium chemistry --- screen-printed electrodes --- DNA hybridization --- VOCs --- environmental --- packaging --- diagnostic --- pollution --- colorectal cancer --- KRAS --- lateral flow assay --- dipstick --- gold nanoparticles --- diagnostics --- multiplex --- point-of-care diagnostics --- REASSURED

Listing 1 - 7 of 7
Sort by