Narrow your search

Library

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

VIVES (6)

FARO (5)

ULiège (5)

Vlaams Parlement (5)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2022 (3)

2021 (2)

2020 (3)

2019 (1)

2017 (1)

More...
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Inverse problems and nonlinear evolution equations : solutions, Darboux matrices and Weyl-Titchmarsh functions
Authors: --- ---
Year: 2013 Publisher: Berlin ; Boston : Walter de Gruyter GmbH & Co., KG,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role. The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund-Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way. The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas. The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.


Book
Lie and non-Lie Symmetries: Theory and Applications for Solving Nonlinear Models
Author:
ISBN: 3038425273 3038425265 Year: 2017 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the end of the 19th century when the prominent Norwegian mathematician Sophus Lie created the theory of Lie algebras and Lie groups and developed the method of their applications for solving differential equations, his theory and method have continuously been the research focus of many well-known mathematicians and physicists. This book is devoted to recent development in Lie theory and its applications for solving physically and biologically motivated equations and models. The book contains the articles published in two Special Issue of the journal Symmetry, which are devoted to analysis and classification of Lie algebras, which are invariance algebras of real-word models; Lie and conditional symmetry classification problems of nonlinear PDEs; the application of symmetry-based methods for finding new exact solutions of nonlinear PDEs (especially reaction-diffusion equations) arising in applications; the application of the Lie method for solving nonlinear initial and boundary-value problems (especially those for modelling processes with diffusion, heat transfer, and chemotaxis).


Book
Mathematical Physics II
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this “unreasonable appropriateness of Mathematics in the Natural Sciences” emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: “The grand book, the Universe, is written in the language of Mathematics.” In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties.


Book
Mathematical Physics II
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this “unreasonable appropriateness of Mathematics in the Natural Sciences” emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: “The grand book, the Universe, is written in the language of Mathematics.” In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties.


Book
Mathematical Physics II
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this “unreasonable appropriateness of Mathematics in the Natural Sciences” emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: “The grand book, the Universe, is written in the language of Mathematics.” In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties.


Book
Fractional Differential Equations: Theory, Methods and Applications
Authors: ---
ISBN: 303921733X 3039217321 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.


Book
Fractional Integrals and Derivatives: "True" versus "False"
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.


Book
Fractional Integrals and Derivatives: "True" versus "False"
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is devoted to some serious problems that the Fractional Calculus (FC) is currently confronted with and aims at providing some answers to the questions like “What are the fractional integrals and derivatives?”, “What are their decisive mathematical properties?”, “What fractional operators make sense in applications and why?’’, etc. In particular, the “new fractional derivatives and integrals” and the models with these fractional order operators are critically addressed. The Special Issue contains both the surveys and the research contributions. A part of the articles deals with foundations of FC that are considered from the viewpoints of the pure and applied mathematics, and the system theory. Another part of the Special issue addresses the applications of the FC operators and the fractional differential equations. Several articles devoted to the numerical treatment of the FC operators and the fractional differential equations complete the Special Issue.


Book
Applied Mathematics and Fractional Calculus
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia.

Keywords

Research & information: general --- Mathematics & science --- condensing function --- approximate endpoint criterion --- quantum integro-difference BVP --- existence --- fractional Kadomtsev-Petviashvili system --- lie group analysis --- power series solutions --- convergence analysis --- conservation laws --- symmetry --- weighted fractional operators --- convex functions --- HHF type inequality --- fractional calculus --- Euler–Lagrange equation --- natural boundary conditions --- time delay --- MHD equations --- weak solution --- regularity criteria --- anisotropic Lorentz space --- Sonine kernel --- general fractional derivative of arbitrary order --- general fractional integral of arbitrary order --- first fundamental theorem of fractional calculus --- second fundamental theorem of fractional calculus --- ρ-Laplace variational iteration method --- ρ-Laplace decomposition method --- partial differential equation --- caputo operator --- fractional Fornberg–Whitham equation (FWE) --- Riemann–Liouville fractional difference operator --- boundary value problem --- discrete fractional calculus --- existence and uniqueness --- Ulam stability --- elastic beam problem --- tempered fractional derivative --- one-sided tempered fractional derivative --- bilateral tempered fractional derivative --- tempered riesz potential --- collocation method --- hermite cubic spline --- fractional burgers equation --- fractional differential equation --- fractional Dzhrbashyan–Nersesyan derivative --- degenerate evolution equation --- initial value problem --- initial boundary value problem --- partial Riemann–Liouville fractional integral --- Babenko’s approach --- Banach fixed point theorem --- Mittag–Leffler function --- gamma function --- nabla fractional difference --- separated boundary conditions --- Green’s function --- existence of solutions --- Caputo q-derivative --- singular sum fractional q-differential --- fixed point --- equations --- Riemann–Liouville q-integral --- Shehu transform --- Caputo fractional derivative --- Shehu decomposition method --- new iterative transform method --- fractional KdV equation --- approximate solutions --- Riemann–Liouville derivative --- concave operator --- fixed point theorem --- Gelfand problem --- order cone --- integral transform --- Atangana–Baleanu fractional derivative --- Aboodh transform iterative method --- φ-Hilfer fractional system with impulses --- semigroup theory --- nonlocal conditions --- optimal controls --- fractional derivatives --- fractional Prabhakar derivatives --- fractional differential equations --- fractional Sturm–Liouville problems --- eigenfunctions and eigenvalues --- Fredholm–Volterra integral Equations --- fractional derivative --- Bessel polynomials --- Caputo derivative --- collocation points --- Caputo–Fabrizio and Atangana-Baleanu operators --- time-fractional Kaup–Kupershmidt equation --- natural transform --- Adomian decomposition method


Book
Applied Mathematics and Fractional Calculus
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia.

Keywords

condensing function --- approximate endpoint criterion --- quantum integro-difference BVP --- existence --- fractional Kadomtsev-Petviashvili system --- lie group analysis --- power series solutions --- convergence analysis --- conservation laws --- symmetry --- weighted fractional operators --- convex functions --- HHF type inequality --- fractional calculus --- Euler–Lagrange equation --- natural boundary conditions --- time delay --- MHD equations --- weak solution --- regularity criteria --- anisotropic Lorentz space --- Sonine kernel --- general fractional derivative of arbitrary order --- general fractional integral of arbitrary order --- first fundamental theorem of fractional calculus --- second fundamental theorem of fractional calculus --- ρ-Laplace variational iteration method --- ρ-Laplace decomposition method --- partial differential equation --- caputo operator --- fractional Fornberg–Whitham equation (FWE) --- Riemann–Liouville fractional difference operator --- boundary value problem --- discrete fractional calculus --- existence and uniqueness --- Ulam stability --- elastic beam problem --- tempered fractional derivative --- one-sided tempered fractional derivative --- bilateral tempered fractional derivative --- tempered riesz potential --- collocation method --- hermite cubic spline --- fractional burgers equation --- fractional differential equation --- fractional Dzhrbashyan–Nersesyan derivative --- degenerate evolution equation --- initial value problem --- initial boundary value problem --- partial Riemann–Liouville fractional integral --- Babenko’s approach --- Banach fixed point theorem --- Mittag–Leffler function --- gamma function --- nabla fractional difference --- separated boundary conditions --- Green’s function --- existence of solutions --- Caputo q-derivative --- singular sum fractional q-differential --- fixed point --- equations --- Riemann–Liouville q-integral --- Shehu transform --- Caputo fractional derivative --- Shehu decomposition method --- new iterative transform method --- fractional KdV equation --- approximate solutions --- Riemann–Liouville derivative --- concave operator --- fixed point theorem --- Gelfand problem --- order cone --- integral transform --- Atangana–Baleanu fractional derivative --- Aboodh transform iterative method --- φ-Hilfer fractional system with impulses --- semigroup theory --- nonlocal conditions --- optimal controls --- fractional derivatives --- fractional Prabhakar derivatives --- fractional differential equations --- fractional Sturm–Liouville problems --- eigenfunctions and eigenvalues --- Fredholm–Volterra integral Equations --- fractional derivative --- Bessel polynomials --- Caputo derivative --- collocation points --- Caputo–Fabrizio and Atangana-Baleanu operators --- time-fractional Kaup–Kupershmidt equation --- natural transform --- Adomian decomposition method

Listing 1 - 10 of 11 << page
of 2
>>
Sort by