Narrow your search

Library

ULiège (6)

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (14)


Language

English (12)

French (1)

German (1)


Year
From To Submit

2022 (3)

2021 (2)

2020 (4)

2016 (3)

1982 (1)

More...
Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Zuflussbedingte dichtestroemungen in seen
Author:
Year: 1982 Publisher: Zürich : Eidgenössische Technische Hochschule Zürich (ETH) = Ecole polytechnique fédérale de Zürich = Swiss federal institute of technology,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
L'acétylcholine et l'adrénaline ; leur rôle dans la transmission de l'influx nerveux
Author:
Year: 1947 Publisher: Liége G. Thone


Book
Ontogeny and Phylogeny of Brain Barrier Mechanisms
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The brain functions within an internal environment that is determined and controlled by morphological structures and cellular mechanisms present at interfaces between the brain and the rest of the body. In vertebrates these interfaces are across cerebral blood vessels (blood-brain barrier) choroid plexuses (blood-cerebrospinal fluid barrier) and pia-arachnoid. There is a CSF-brain barrier in the neuroepithelium lining the ventricular system that is only present in embryos. There is now substantial evidence that many brain barrier mechanisms develop early and that in some cases they are functionally more active and even more specialized compared to adult barriers. Therefore barriers in developing brain should be viewed as adapted appropriately for the growing brain and not, as is still widely believed, immature. Considerable advances in our understanding of these barrier mechanisms have come from studies of the developing brain and invertebrates. A striking aspect, to be highlighted in this special edition, is that many of the molecular mechanisms in these very diverse species are similar despite differences in the cellular composition of the interfaces. This Frontiers Topic comprises articles in three sections: Original studies, Reviews and Myths & Misconceptions. Original articles provide new information on molecular and cellular barrier mechanisms in developing brains of primates, including human embryos (Brøchner et al., Ek et al., Errede et al.), rodents (Bauer et al., Liddelow, Strazielle & Ghersi-Egea, Saunders et al., Whish et al.), chick (Bueno et al.) and zebrafish (Henson et al.) as well as studies in drosophila (Hindle & Bainton, De Salvo et al., Limmer et al.). The Reviews section includes evolutionary perspectives of the blood-brain and blood-CSF barriers (Bueno et al., Bill & Korzh). There are also detailed reviews of the current state of understanding of different interfaces and their functional mechanisms in developing brain (Bauer et al., Strazielle & Gjersi-Egea, Liddelow, Richardson et al., Errede et al., Henson et al., Brøchner et al.) and in invertebrates (Hindle & Bainton, De Salvo et al., Limmer et al). Different aspects of the relationship between properties of the internal environment of the brain and its development are discussed. (Stolp & Molnar, Johansson, Prasongchean et al.). A neglected area, namely barriers over the surface of the brain during development is also covered (Brøchner et al.). Clinically related perspectives on barrier disruption in neonatal stroke are provided by Kratzer et al. and other aspects of dysfunction by Morretti et al. and by Palmeta et al. on the continuing problem of bilirubin toxicity. Progress in this field is hampered by many prevailing myths about barrier function, combined with methodologies that are not always appropriately selected or interpreted. These are covered in the Misconceptions, Myths and Methods section, including historical aspects and discussion of the paracellular pathway, a central dogma of epithelial and endothelial biology (Saunders et al.) and a review of markers used to define brain barrier integrity in development and in pathological conditions (Saunders et al.). Use of inappropriate markers has caused considerable confusion and unreliable interpretation in many published studies. Torbett et al. deal with the complexities of the new field of applying proteomics to understanding blood-brain barrier properties as do Huntley at al. with respect to applying modern high throughput gene expression methods (Huntley et al.). The Editorial summarizes the contributions from all authors. This includes mention of some the main unanswered but answerable questions in the field and what the impediments to progress may be.


Book
Ontogeny and Phylogeny of Brain Barrier Mechanisms
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The brain functions within an internal environment that is determined and controlled by morphological structures and cellular mechanisms present at interfaces between the brain and the rest of the body. In vertebrates these interfaces are across cerebral blood vessels (blood-brain barrier) choroid plexuses (blood-cerebrospinal fluid barrier) and pia-arachnoid. There is a CSF-brain barrier in the neuroepithelium lining the ventricular system that is only present in embryos. There is now substantial evidence that many brain barrier mechanisms develop early and that in some cases they are functionally more active and even more specialized compared to adult barriers. Therefore barriers in developing brain should be viewed as adapted appropriately for the growing brain and not, as is still widely believed, immature. Considerable advances in our understanding of these barrier mechanisms have come from studies of the developing brain and invertebrates. A striking aspect, to be highlighted in this special edition, is that many of the molecular mechanisms in these very diverse species are similar despite differences in the cellular composition of the interfaces. This Frontiers Topic comprises articles in three sections: Original studies, Reviews and Myths & Misconceptions. Original articles provide new information on molecular and cellular barrier mechanisms in developing brains of primates, including human embryos (Brøchner et al., Ek et al., Errede et al.), rodents (Bauer et al., Liddelow, Strazielle & Ghersi-Egea, Saunders et al., Whish et al.), chick (Bueno et al.) and zebrafish (Henson et al.) as well as studies in drosophila (Hindle & Bainton, De Salvo et al., Limmer et al.). The Reviews section includes evolutionary perspectives of the blood-brain and blood-CSF barriers (Bueno et al., Bill & Korzh). There are also detailed reviews of the current state of understanding of different interfaces and their functional mechanisms in developing brain (Bauer et al., Strazielle & Gjersi-Egea, Liddelow, Richardson et al., Errede et al., Henson et al., Brøchner et al.) and in invertebrates (Hindle & Bainton, De Salvo et al., Limmer et al). Different aspects of the relationship between properties of the internal environment of the brain and its development are discussed. (Stolp & Molnar, Johansson, Prasongchean et al.). A neglected area, namely barriers over the surface of the brain during development is also covered (Brøchner et al.). Clinically related perspectives on barrier disruption in neonatal stroke are provided by Kratzer et al. and other aspects of dysfunction by Morretti et al. and by Palmeta et al. on the continuing problem of bilirubin toxicity. Progress in this field is hampered by many prevailing myths about barrier function, combined with methodologies that are not always appropriately selected or interpreted. These are covered in the Misconceptions, Myths and Methods section, including historical aspects and discussion of the paracellular pathway, a central dogma of epithelial and endothelial biology (Saunders et al.) and a review of markers used to define brain barrier integrity in development and in pathological conditions (Saunders et al.). Use of inappropriate markers has caused considerable confusion and unreliable interpretation in many published studies. Torbett et al. deal with the complexities of the new field of applying proteomics to understanding blood-brain barrier properties as do Huntley at al. with respect to applying modern high throughput gene expression methods (Huntley et al.). The Editorial summarizes the contributions from all authors. This includes mention of some the main unanswered but answerable questions in the field and what the impediments to progress may be.


Book
Ontogeny and Phylogeny of Brain Barrier Mechanisms
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The brain functions within an internal environment that is determined and controlled by morphological structures and cellular mechanisms present at interfaces between the brain and the rest of the body. In vertebrates these interfaces are across cerebral blood vessels (blood-brain barrier) choroid plexuses (blood-cerebrospinal fluid barrier) and pia-arachnoid. There is a CSF-brain barrier in the neuroepithelium lining the ventricular system that is only present in embryos. There is now substantial evidence that many brain barrier mechanisms develop early and that in some cases they are functionally more active and even more specialized compared to adult barriers. Therefore barriers in developing brain should be viewed as adapted appropriately for the growing brain and not, as is still widely believed, immature. Considerable advances in our understanding of these barrier mechanisms have come from studies of the developing brain and invertebrates. A striking aspect, to be highlighted in this special edition, is that many of the molecular mechanisms in these very diverse species are similar despite differences in the cellular composition of the interfaces. This Frontiers Topic comprises articles in three sections: Original studies, Reviews and Myths & Misconceptions. Original articles provide new information on molecular and cellular barrier mechanisms in developing brains of primates, including human embryos (Brøchner et al., Ek et al., Errede et al.), rodents (Bauer et al., Liddelow, Strazielle & Ghersi-Egea, Saunders et al., Whish et al.), chick (Bueno et al.) and zebrafish (Henson et al.) as well as studies in drosophila (Hindle & Bainton, De Salvo et al., Limmer et al.). The Reviews section includes evolutionary perspectives of the blood-brain and blood-CSF barriers (Bueno et al., Bill & Korzh). There are also detailed reviews of the current state of understanding of different interfaces and their functional mechanisms in developing brain (Bauer et al., Strazielle & Gjersi-Egea, Liddelow, Richardson et al., Errede et al., Henson et al., Brøchner et al.) and in invertebrates (Hindle & Bainton, De Salvo et al., Limmer et al). Different aspects of the relationship between properties of the internal environment of the brain and its development are discussed. (Stolp & Molnar, Johansson, Prasongchean et al.). A neglected area, namely barriers over the surface of the brain during development is also covered (Brøchner et al.). Clinically related perspectives on barrier disruption in neonatal stroke are provided by Kratzer et al. and other aspects of dysfunction by Morretti et al. and by Palmeta et al. on the continuing problem of bilirubin toxicity. Progress in this field is hampered by many prevailing myths about barrier function, combined with methodologies that are not always appropriately selected or interpreted. These are covered in the Misconceptions, Myths and Methods section, including historical aspects and discussion of the paracellular pathway, a central dogma of epithelial and endothelial biology (Saunders et al.) and a review of markers used to define brain barrier integrity in development and in pathological conditions (Saunders et al.). Use of inappropriate markers has caused considerable confusion and unreliable interpretation in many published studies. Torbett et al. deal with the complexities of the new field of applying proteomics to understanding blood-brain barrier properties as do Huntley at al. with respect to applying modern high throughput gene expression methods (Huntley et al.). The Editorial summarizes the contributions from all authors. This includes mention of some the main unanswered but answerable questions in the field and what the impediments to progress may be.


Book
Marine Microbial Diversity as Source of Bioactive Compounds
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.

Keywords

Medicine --- co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp. --- co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp.


Book
Marine Microbial Diversity as Source of Bioactive Compounds
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.


Book
Marine Microbial Diversity as Source of Bioactive Compounds
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.


Book
Geological and Mineralogical Sequestration of CO2
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increasing of concentrations of anthropologically generated greenhouse gases (primarily CO2) in the atmosphere is responsible for global warming and ocean acidification. The International Panel on Climate Change (IPCC) indicates that carbon capture and storage (CCS) techniques are a necessary measure to reduce greenhouse gas emissions in the short-to-medium term. One of the technological solutions is the long-term storage of CO2 in appropriate geological formations, such as deep saline formations and depleted oil and gas reservoirs. Promising alternative options that guarantee the permanent capture of CO2, although on a smaller scale, are the in-situ and ex-situ fixation of CO2 in the form of inorganic carbonates via the carbonation of mafic and ultramafic rocks and of Mg/Ca-rich fly ash, iron and steel slags, cement waste, and mine tailings. According to this general framework, this Special Issue collects articles covering various aspects of recent scientific advances in the geological and mineralogical sequestration of CO2. In particular, it includes the assessment of the storage potential of candidate injection sites in Croatia, Greece, and Norway; numerical modelling of geochemical–mineralogical reactions and CO2 flow; studies of natural analogues providing information on the processes and the physical–chemical conditions characterizing serpentinite carbonation; and experimental investigations to better understand the effectiveness and mechanisms of geological and mineralogical CO2 sequestration.

Keywords

Research & information: general --- Earth sciences, geography, environment, planning --- CO2 reservoir rock --- CO2 sealing capacity --- CO2 sequestration --- CO2 storage capacity --- CO2 storage ratio --- supercritical CO2 --- CO2 geological storage --- depleted gas fields --- deep saline aquifers --- Adriatic offshore --- Croatia --- CO2 geological sequestration --- unconsolidated sediments --- gas hydrates --- suitable methodology for mineral carbonation --- construction and demolition waste --- basalts --- carbonation --- CO2 storage --- hydrochemistry --- regional heat flow --- CO2 leakage --- cement --- well integrity --- leakage remediation --- TOUGHREACT --- reactive transport modelling --- CCS --- mineralization --- carbonatization --- mineral trapping --- mineral sequestration --- Johansen Formation --- North Sea --- sedimentary facies --- serpentinite --- X-ray diffraction --- rietveld refinement --- magnesium leaching --- thermal activation --- meta-serpentine --- heat activation optimization --- CO2 mineral sequestration --- hydromagnesite --- kerolite --- Cu mine --- Montecastelli --- underground microclimate --- replacement process --- low temperature carbonate precipitation --- Secondary Ion Mass Spectrometer --- seawater influx --- hydrothermal circulation --- ophicalcite --- CO2 reservoir rock --- CO2 sealing capacity --- CO2 sequestration --- CO2 storage capacity --- CO2 storage ratio --- supercritical CO2 --- CO2 geological storage --- depleted gas fields --- deep saline aquifers --- Adriatic offshore --- Croatia --- CO2 geological sequestration --- unconsolidated sediments --- gas hydrates --- suitable methodology for mineral carbonation --- construction and demolition waste --- basalts --- carbonation --- CO2 storage --- hydrochemistry --- regional heat flow --- CO2 leakage --- cement --- well integrity --- leakage remediation --- TOUGHREACT --- reactive transport modelling --- CCS --- mineralization --- carbonatization --- mineral trapping --- mineral sequestration --- Johansen Formation --- North Sea --- sedimentary facies --- serpentinite --- X-ray diffraction --- rietveld refinement --- magnesium leaching --- thermal activation --- meta-serpentine --- heat activation optimization --- CO2 mineral sequestration --- hydromagnesite --- kerolite --- Cu mine --- Montecastelli --- underground microclimate --- replacement process --- low temperature carbonate precipitation --- Secondary Ion Mass Spectrometer --- seawater influx --- hydrothermal circulation --- ophicalcite


Book
Geological and Mineralogical Sequestration of CO2
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increasing of concentrations of anthropologically generated greenhouse gases (primarily CO2) in the atmosphere is responsible for global warming and ocean acidification. The International Panel on Climate Change (IPCC) indicates that carbon capture and storage (CCS) techniques are a necessary measure to reduce greenhouse gas emissions in the short-to-medium term. One of the technological solutions is the long-term storage of CO2 in appropriate geological formations, such as deep saline formations and depleted oil and gas reservoirs. Promising alternative options that guarantee the permanent capture of CO2, although on a smaller scale, are the in-situ and ex-situ fixation of CO2 in the form of inorganic carbonates via the carbonation of mafic and ultramafic rocks and of Mg/Ca-rich fly ash, iron and steel slags, cement waste, and mine tailings. According to this general framework, this Special Issue collects articles covering various aspects of recent scientific advances in the geological and mineralogical sequestration of CO2. In particular, it includes the assessment of the storage potential of candidate injection sites in Croatia, Greece, and Norway; numerical modelling of geochemical–mineralogical reactions and CO2 flow; studies of natural analogues providing information on the processes and the physical–chemical conditions characterizing serpentinite carbonation; and experimental investigations to better understand the effectiveness and mechanisms of geological and mineralogical CO2 sequestration.

Listing 1 - 10 of 14 << page
of 2
>>
Sort by