Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Nanoparticles (NPs) offer unique properties for biomedical applications, leading to new nanomedicines. Recent examples of advanced nanoparticle-based nanomedicines are COVID-19 RNA vaccines. Regardless of the delivery route of the NPs into the body (intravenous or subcutaneous injection, oral, intranasal, etc.), NPs inevitably come into contact with immune cells, such as macrophages. Macrophages are phagocytizing cells that determine the fate and the lifetime of NPs in relevant biological fluids or tissues, which has consequences for both nanosafety and nanomedicine. The aim of this Special Issue is to cover recent advancements in our understanding of NP–macrophage interactions, with a focus on in vitro models for nanosafety and novel nanomedicine approaches that allow the modulation of the immunological profile of macrophages. The current Special Issue compiles nine papers: seven research articles and two review articles. The original articles include studies on the interaction of different nanomaterials, such as multi-walled carbon nanotubes (MWCNTs), amorphous silica, gold nanoparticles, lipid carriers, and microspheres, with macrophages in different scenarios.
Medicine --- chronic wound --- device --- foot ulcer --- inflammation --- wound healing --- macrophage --- nanomaterial --- nanoparticle --- drug delivery --- immune system --- anti-inflammatory --- innate immunity --- osteoarthritis --- rifabutin --- nanostructured lipid carriers --- cell uptake --- Caco-2 cells --- oral administration --- Crohn’s disease --- nanomaterials --- macrophages --- class A type 1 scavenger receptors --- cytotoxicity --- macrophage–nanoparticle interaction --- monocytes --- gold nanoparticles --- in vitro models --- innate memory --- 2D cultures --- 3D cultures --- carbon nanotube --- scavenger receptor --- phagocytosis --- protein corona --- bovine serum albumin --- synthetic amorphous silica --- in vitro testing --- NR8383 alveolar macrophage --- ICP-MS analysis of cell bound SiO2 --- multi-walled carbon nanotubes --- nanoparticles --- chemokines --- transcriptomics --- zebrafish --- n/a --- Crohn's disease --- macrophage-nanoparticle interaction
Choose an application
This Special Issue presents studies on the genotoxicity of nanomaterials. Although nanomaterials provide multiple benefits in a wide range of applications, challenges remain in addressing strong concerns about their risks to the environment and human health. As a result of inconsistencies among published results and diverging conclusions, the understanding of nanomaterial exposure and toxicity remains unclear. Determining whether these materials cause DNA damage—the first step in carcinogenesis—must be a priority in testing. In this book, readers will find recent publications on the genotoxic response to a broad range of nanomaterials, the impact of physico-chemical characteristics, safe-by-design and new developed tools.
Humanities --- Social interaction --- graphene oxide --- reduced graphene oxide --- micronucleus --- oxidative stress --- safer-by-design --- tungsten --- nanoparticles --- tritiated particles --- in vitro testing --- cytotoxicity --- micronuclei formation --- DNA damage --- epigenetics --- DNA methylation --- BEAS-2B cells. --- polystyrene nanoparticles --- nanoplastics --- genotoxicity --- Hs27 human fibroblasts --- comet assay --- FPG enzyme --- TiO2NP --- SiO2NP --- ZnONP --- CeO2NP --- AgNP --- multi-walled carbon nanotubes (MWCNT) --- titanium dioxide nanoparticles --- lincomycin --- human amniotic cells --- in vitro genotoxicity --- apoptosis --- nanotoxicology --- metal oxides --- high throughput screening --- micronucleus assay --- nanomaterial --- aluminum --- oral route --- gut --- liver --- V79 cells --- Hprt --- advanced in vitro model --- hepatotoxicity --- liver spheroids --- 3D culture --- HepG2 --- nongenotoxic silver nanoparticles --- genotoxic --- cytotoxic --- antioxidant activity --- silver ions --- Allium cepa --- metal/coating agent ratio --- n/a
Choose an application
This Special Issue presents studies on the genotoxicity of nanomaterials. Although nanomaterials provide multiple benefits in a wide range of applications, challenges remain in addressing strong concerns about their risks to the environment and human health. As a result of inconsistencies among published results and diverging conclusions, the understanding of nanomaterial exposure and toxicity remains unclear. Determining whether these materials cause DNA damage—the first step in carcinogenesis—must be a priority in testing. In this book, readers will find recent publications on the genotoxic response to a broad range of nanomaterials, the impact of physico-chemical characteristics, safe-by-design and new developed tools.
graphene oxide --- reduced graphene oxide --- micronucleus --- oxidative stress --- safer-by-design --- tungsten --- nanoparticles --- tritiated particles --- in vitro testing --- cytotoxicity --- micronuclei formation --- DNA damage --- epigenetics --- DNA methylation --- BEAS-2B cells. --- polystyrene nanoparticles --- nanoplastics --- genotoxicity --- Hs27 human fibroblasts --- comet assay --- FPG enzyme --- TiO2NP --- SiO2NP --- ZnONP --- CeO2NP --- AgNP --- multi-walled carbon nanotubes (MWCNT) --- titanium dioxide nanoparticles --- lincomycin --- human amniotic cells --- in vitro genotoxicity --- apoptosis --- nanotoxicology --- metal oxides --- high throughput screening --- micronucleus assay --- nanomaterial --- aluminum --- oral route --- gut --- liver --- V79 cells --- Hprt --- advanced in vitro model --- hepatotoxicity --- liver spheroids --- 3D culture --- HepG2 --- nongenotoxic silver nanoparticles --- genotoxic --- cytotoxic --- antioxidant activity --- silver ions --- Allium cepa --- metal/coating agent ratio --- n/a
Choose an application
This Special Issue presents studies on the genotoxicity of nanomaterials. Although nanomaterials provide multiple benefits in a wide range of applications, challenges remain in addressing strong concerns about their risks to the environment and human health. As a result of inconsistencies among published results and diverging conclusions, the understanding of nanomaterial exposure and toxicity remains unclear. Determining whether these materials cause DNA damage—the first step in carcinogenesis—must be a priority in testing. In this book, readers will find recent publications on the genotoxic response to a broad range of nanomaterials, the impact of physico-chemical characteristics, safe-by-design and new developed tools.
Humanities --- Social interaction --- graphene oxide --- reduced graphene oxide --- micronucleus --- oxidative stress --- safer-by-design --- tungsten --- nanoparticles --- tritiated particles --- in vitro testing --- cytotoxicity --- micronuclei formation --- DNA damage --- epigenetics --- DNA methylation --- BEAS-2B cells. --- polystyrene nanoparticles --- nanoplastics --- genotoxicity --- Hs27 human fibroblasts --- comet assay --- FPG enzyme --- TiO2NP --- SiO2NP --- ZnONP --- CeO2NP --- AgNP --- multi-walled carbon nanotubes (MWCNT) --- titanium dioxide nanoparticles --- lincomycin --- human amniotic cells --- in vitro genotoxicity --- apoptosis --- nanotoxicology --- metal oxides --- high throughput screening --- micronucleus assay --- nanomaterial --- aluminum --- oral route --- gut --- liver --- V79 cells --- Hprt --- advanced in vitro model --- hepatotoxicity --- liver spheroids --- 3D culture --- HepG2 --- nongenotoxic silver nanoparticles --- genotoxic --- cytotoxic --- antioxidant activity --- silver ions --- Allium cepa --- metal/coating agent ratio --- graphene oxide --- reduced graphene oxide --- micronucleus --- oxidative stress --- safer-by-design --- tungsten --- nanoparticles --- tritiated particles --- in vitro testing --- cytotoxicity --- micronuclei formation --- DNA damage --- epigenetics --- DNA methylation --- BEAS-2B cells. --- polystyrene nanoparticles --- nanoplastics --- genotoxicity --- Hs27 human fibroblasts --- comet assay --- FPG enzyme --- TiO2NP --- SiO2NP --- ZnONP --- CeO2NP --- AgNP --- multi-walled carbon nanotubes (MWCNT) --- titanium dioxide nanoparticles --- lincomycin --- human amniotic cells --- in vitro genotoxicity --- apoptosis --- nanotoxicology --- metal oxides --- high throughput screening --- micronucleus assay --- nanomaterial --- aluminum --- oral route --- gut --- liver --- V79 cells --- Hprt --- advanced in vitro model --- hepatotoxicity --- liver spheroids --- 3D culture --- HepG2 --- nongenotoxic silver nanoparticles --- genotoxic --- cytotoxic --- antioxidant activity --- silver ions --- Allium cepa --- metal/coating agent ratio
Choose an application
Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called “green synthesis”, where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes—two key features determining their bioactivity.
anti-fungal --- chitosan --- graphene oxide --- n/a --- energy density --- sponges --- Escherichia coli --- filariasis --- titanium dioxide nanoparticles --- synthetic amorphous silica (SAS) --- green synthesis --- ionic nanocomplexes --- methylene blue --- cacao --- mesoporous materials --- polyol-assisted fluoride ions slow-release strategy --- stored product insects --- polyarginine --- solvothermal synthesis --- agricultural pests --- time dependence --- magnetic nanomaterials --- in vitro testing --- poly-L-lactic acid --- Raman spectroscopy --- sample preparation --- self-assembly --- solid carbon spheres --- crystallographic phase control --- microwave injured cells --- CuInS2 --- antimicrobial --- ZnO NPs --- Scadoxus multiflorus --- lipase --- mosquito control --- biocatalysis --- hyaluronic acid --- hybrid nanoflowers --- Desulfovibrio desulfuricans --- reduced graphene oxide --- ovicidal --- enzyme immobilization --- palladium nanoparticles --- non-cytotoxic --- photocatalysis --- insecticides --- ultrasonic dispersing (USD) --- X-ray photoelectron spectroscopy --- cell proliferation --- CVD process --- NaYF4 mesocrystals --- microwave energy --- leaf --- dengue --- hollow carbon spheres --- gum kondagogu --- functionalization --- silver nanoparticles --- larvicidal --- nanostructured --- plasma --- electrical conductivity --- larvicides --- TEM --- nanomaterials (NMs) --- carbon spheres
Listing 1 - 5 of 5 |
Sort by
|