Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Acide aminé --- Amino acids --- Composé hétérocyclique --- heterocyclic compounds --- Synthèse chimique --- Chemical synthesis --- Structure chimique --- chemical structure --- Iminoacide --- Compose imine
Choose an application
Cell membranes are complex structures able to contain the main elements of the cell and to protect them from the external surroundings, becoming the most fundamental interface in Biology. The main subject of this book is the study of the structure and characteristics of lipid membranes in a wide variety of environments, ranging from simple phospholipid membranes to complex systems including proteins, peptides, or oncogenes as well as the analysis of the interactions of the membrane components with small molecules and drugs. The scope of this book is to provide recent developments on membrane structure, composition and function by means of theoretical and experimental techniques, some of them combining computer simulations with available data obtained at the laboratory.This Special Issue aims to report brand new key contributions to the field and also to give an overview about the connection between experiments and computer simulations, addressing fundamental aspects and applied research in biological membranes, with particular attention paid to the applications of computer modeling and simulation to medicine.
Research & information: general --- Biology, life sciences --- Biochemistry --- peptide --- MD --- GUV --- LUV --- azo-amino acid --- KRas-4B --- mutation --- post-translational modification --- HVR --- anionic plasma membrane --- signaling --- cholesterol --- model membranes --- molecular dynamics --- calorimetry --- Schiff base --- imine --- benzimidazole --- 2,4-dihydroxybenzaldehyde --- neutron reflectometry --- X-ray reflectometry --- small-angle neutron scattering --- small-angle X-ray scattering --- molecular dynamics simulations --- scattering length density profile --- phospholipid membrane --- phosphatidylserine --- cancer cells --- MD simulation --- membrane permeability --- withaferin A --- withanone --- CAPE --- artepillin C --- membrane elasticity --- red blood cells --- hemodynamics --- hemorheology --- microfluidics --- benzothiadiazine derivatives --- drug design --- KCNE3 --- structural dynamics --- lipid bilayers --- molecular dynamics simulation --- membrane mimetic --- n/a
Choose an application
The new frontier of pharmaceutical sciences is gene therapy, which is the use of molecules able to interact directly with the expression of the genetic material of the patient as well as of the disease-causing guest (bacteria, virus, parasites, and tumor cells). Among the molecules of interest for gene therapy, a relevant role is played by small interfering RNA (siRNA) molecules able to interfere with the expression of genes of interest for some diseases. However, siRNA molecules, even if they are powerful as drugs, are difficult to deliver since they are sensitive to enzymes present in plasma and they are large and negatively charged, so are difficult to administer into the cell nuclei, since the cell walls are scarcely permeable to large molecules and are also negatively charged. Therefore, the focus of research on siRNA-based therapies is their delivery, which can be performed by chemical modification, association with aptamers or polycations, or embedding them into properly designed liposomes. This book is centered on the more recent development in siRNA delivery techniques toward the clinical applications of this potent class of drugs.
oligonucleotide delivery --- light-activated release --- intracellular release --- liposome --- indocyanine green --- drug co-delivery --- methotrexate --- siRNA --- antitumor effect --- mixed micelles --- targeted delivery system --- cationic liposome --- folate --- folate receptor --- cationic cholesterol derivative --- siRNA delivery --- gene knockdown --- tumor-targeting --- VEGFA --- VEGFR1 --- endoglin --- peptide --- angiogenesis --- gene silencing --- migration --- proliferation --- endothelial cells --- RNAi therapeutics --- amphiphilic dendrons --- PAMAM dendrimers --- self-assembling --- nanovectors --- covalent dendrimers --- NABDs --- liposomes --- clinical trials --- drug delivery --- nanoparticle --- carbonate apatite --- ERBB2 --- AKT --- breast cancer --- ovarian cancer --- polymer --- lipid --- delivery --- poly(ethylene) imine --- PEI --- RNA --- tyrosine-modification --- tumor xenograft --- magnetic nanoparticle --- iron oxide --- BCL2 --- BIRC5/survivin --- oral cancer --- aptamers --- cancer --- nanoparticles --- STAT6 --- polyaspartamide --- pegylation --- polyamine --- polyplexes --- asthma --- n/a
Choose an application
Cell membranes are complex structures able to contain the main elements of the cell and to protect them from the external surroundings, becoming the most fundamental interface in Biology. The main subject of this book is the study of the structure and characteristics of lipid membranes in a wide variety of environments, ranging from simple phospholipid membranes to complex systems including proteins, peptides, or oncogenes as well as the analysis of the interactions of the membrane components with small molecules and drugs. The scope of this book is to provide recent developments on membrane structure, composition and function by means of theoretical and experimental techniques, some of them combining computer simulations with available data obtained at the laboratory.This Special Issue aims to report brand new key contributions to the field and also to give an overview about the connection between experiments and computer simulations, addressing fundamental aspects and applied research in biological membranes, with particular attention paid to the applications of computer modeling and simulation to medicine.
peptide --- MD --- GUV --- LUV --- azo-amino acid --- KRas-4B --- mutation --- post-translational modification --- HVR --- anionic plasma membrane --- signaling --- cholesterol --- model membranes --- molecular dynamics --- calorimetry --- Schiff base --- imine --- benzimidazole --- 2,4-dihydroxybenzaldehyde --- neutron reflectometry --- X-ray reflectometry --- small-angle neutron scattering --- small-angle X-ray scattering --- molecular dynamics simulations --- scattering length density profile --- phospholipid membrane --- phosphatidylserine --- cancer cells --- MD simulation --- membrane permeability --- withaferin A --- withanone --- CAPE --- artepillin C --- membrane elasticity --- red blood cells --- hemodynamics --- hemorheology --- microfluidics --- benzothiadiazine derivatives --- drug design --- KCNE3 --- structural dynamics --- lipid bilayers --- molecular dynamics simulation --- membrane mimetic --- n/a
Choose an application
The new frontier of pharmaceutical sciences is gene therapy, which is the use of molecules able to interact directly with the expression of the genetic material of the patient as well as of the disease-causing guest (bacteria, virus, parasites, and tumor cells). Among the molecules of interest for gene therapy, a relevant role is played by small interfering RNA (siRNA) molecules able to interfere with the expression of genes of interest for some diseases. However, siRNA molecules, even if they are powerful as drugs, are difficult to deliver since they are sensitive to enzymes present in plasma and they are large and negatively charged, so are difficult to administer into the cell nuclei, since the cell walls are scarcely permeable to large molecules and are also negatively charged. Therefore, the focus of research on siRNA-based therapies is their delivery, which can be performed by chemical modification, association with aptamers or polycations, or embedding them into properly designed liposomes. This book is centered on the more recent development in siRNA delivery techniques toward the clinical applications of this potent class of drugs.
Medicine --- oligonucleotide delivery --- light-activated release --- intracellular release --- liposome --- indocyanine green --- drug co-delivery --- methotrexate --- siRNA --- antitumor effect --- mixed micelles --- targeted delivery system --- cationic liposome --- folate --- folate receptor --- cationic cholesterol derivative --- siRNA delivery --- gene knockdown --- tumor-targeting --- VEGFA --- VEGFR1 --- endoglin --- peptide --- angiogenesis --- gene silencing --- migration --- proliferation --- endothelial cells --- RNAi therapeutics --- amphiphilic dendrons --- PAMAM dendrimers --- self-assembling --- nanovectors --- covalent dendrimers --- NABDs --- liposomes --- clinical trials --- drug delivery --- nanoparticle --- carbonate apatite --- ERBB2 --- AKT --- breast cancer --- ovarian cancer --- polymer --- lipid --- delivery --- poly(ethylene) imine --- PEI --- RNA --- tyrosine-modification --- tumor xenograft --- magnetic nanoparticle --- iron oxide --- BCL2 --- BIRC5/survivin --- oral cancer --- aptamers --- cancer --- nanoparticles --- STAT6 --- polyaspartamide --- pegylation --- polyamine --- polyplexes --- asthma --- oligonucleotide delivery --- light-activated release --- intracellular release --- liposome --- indocyanine green --- drug co-delivery --- methotrexate --- siRNA --- antitumor effect --- mixed micelles --- targeted delivery system --- cationic liposome --- folate --- folate receptor --- cationic cholesterol derivative --- siRNA delivery --- gene knockdown --- tumor-targeting --- VEGFA --- VEGFR1 --- endoglin --- peptide --- angiogenesis --- gene silencing --- migration --- proliferation --- endothelial cells --- RNAi therapeutics --- amphiphilic dendrons --- PAMAM dendrimers --- self-assembling --- nanovectors --- covalent dendrimers --- NABDs --- liposomes --- clinical trials --- drug delivery --- nanoparticle --- carbonate apatite --- ERBB2 --- AKT --- breast cancer --- ovarian cancer --- polymer --- lipid --- delivery --- poly(ethylene) imine --- PEI --- RNA --- tyrosine-modification --- tumor xenograft --- magnetic nanoparticle --- iron oxide --- BCL2 --- BIRC5/survivin --- oral cancer --- aptamers --- cancer --- nanoparticles --- STAT6 --- polyaspartamide --- pegylation --- polyamine --- polyplexes --- asthma
Choose an application
Cell membranes are complex structures able to contain the main elements of the cell and to protect them from the external surroundings, becoming the most fundamental interface in Biology. The main subject of this book is the study of the structure and characteristics of lipid membranes in a wide variety of environments, ranging from simple phospholipid membranes to complex systems including proteins, peptides, or oncogenes as well as the analysis of the interactions of the membrane components with small molecules and drugs. The scope of this book is to provide recent developments on membrane structure, composition and function by means of theoretical and experimental techniques, some of them combining computer simulations with available data obtained at the laboratory.This Special Issue aims to report brand new key contributions to the field and also to give an overview about the connection between experiments and computer simulations, addressing fundamental aspects and applied research in biological membranes, with particular attention paid to the applications of computer modeling and simulation to medicine.
Research & information: general --- Biology, life sciences --- Biochemistry --- peptide --- MD --- GUV --- LUV --- azo-amino acid --- KRas-4B --- mutation --- post-translational modification --- HVR --- anionic plasma membrane --- signaling --- cholesterol --- model membranes --- molecular dynamics --- calorimetry --- Schiff base --- imine --- benzimidazole --- 2,4-dihydroxybenzaldehyde --- neutron reflectometry --- X-ray reflectometry --- small-angle neutron scattering --- small-angle X-ray scattering --- molecular dynamics simulations --- scattering length density profile --- phospholipid membrane --- phosphatidylserine --- cancer cells --- MD simulation --- membrane permeability --- withaferin A --- withanone --- CAPE --- artepillin C --- membrane elasticity --- red blood cells --- hemodynamics --- hemorheology --- microfluidics --- benzothiadiazine derivatives --- drug design --- KCNE3 --- structural dynamics --- lipid bilayers --- molecular dynamics simulation --- membrane mimetic --- peptide --- MD --- GUV --- LUV --- azo-amino acid --- KRas-4B --- mutation --- post-translational modification --- HVR --- anionic plasma membrane --- signaling --- cholesterol --- model membranes --- molecular dynamics --- calorimetry --- Schiff base --- imine --- benzimidazole --- 2,4-dihydroxybenzaldehyde --- neutron reflectometry --- X-ray reflectometry --- small-angle neutron scattering --- small-angle X-ray scattering --- molecular dynamics simulations --- scattering length density profile --- phospholipid membrane --- phosphatidylserine --- cancer cells --- MD simulation --- membrane permeability --- withaferin A --- withanone --- CAPE --- artepillin C --- membrane elasticity --- red blood cells --- hemodynamics --- hemorheology --- microfluidics --- benzothiadiazine derivatives --- drug design --- KCNE3 --- structural dynamics --- lipid bilayers --- molecular dynamics simulation --- membrane mimetic
Choose an application
BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”
Research & information: general --- imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- n/a
Choose an application
This book collects contributions published in the Special Issue “From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential” and dealing with successful stories of drug improvement or design using classic protocols, quantum mechanical mechanistic investigation, or hybrid approaches such as QM/MM or QM/ML (machine learning). In the last two decades, computer-aided modeling has strongly supported scientists’ intuition to design functional molecules. High-throughput screening protocols, mainly based on classical mechanics’ atomistic potentials, are largely employed in biology and medicinal chemistry studies with the aim of simulating drug-likeness and bioactivity in terms of efficient binding to the target receptors. The advantages of this approach are quick outcomes, the possibility of repurposing commercially available drugs, consolidated protocols, and the availability of large databases. On the other hand, these studies do not intrinsically provide reactivity information, which requires quantum mechanical methodologies that are only applicable to significantly smaller and simplified systems at present. These latter studies focus on the drug itself, considering the chemical properties related to its structural features and motifs. Overall, such simulations provide necessary insights for a better understanding of the chemistry principles that rule the diseases at the molecular level, as well as possible mechanisms for restoring the physiological equilibrium.
Medicine --- Pharmacology --- SARS-CoV-2 --- benzoic acid derivatives --- gallic acid --- molecular docking --- reactivity parameters --- selenoxide elimination --- one-pot --- imine-enamine --- reaction mechanism --- DFT calculations --- selenium --- anti-inflammatory drugs --- QSAR --- pain management --- cyclooxygenase --- multitarget drug --- cannabinoid --- neuropathic pain --- clopidogrel --- NMR study --- oxone --- peroxymonosulfate --- sodium halide --- thienopyridine --- drug discovery --- precision medicine --- pharmacodynamics --- pharmacokinetics --- coronavirus SARS-CoV-2 --- COVID-19 --- 3-chymotrypsin-like protease --- pyrimidonic pharmaceuticals --- molecular dynamics simulations --- binding free energy --- β-carrageenan --- antioxidant activity --- Box-Behken --- extraction --- Eucheuma gelatinae --- physic-chemistry --- rheology --- quercetin --- quercetin 3-O-glucuronide --- cisplatin --- nephrotoxicity --- cytoprotection --- lithium therapy --- neurocytology --- toxicology --- neuroprotection --- chemoinformatics --- big data --- methadone hydrochloride --- pharmaceutical solutions --- drug compounding --- high performance liquid chromatography --- stability study --- microbiology --- fucoidan --- alginate --- L-selectin --- E-selectin --- MCP-1 --- ICAM-1 --- THP-1 macrophage --- monocyte migration --- protein binding --- breast milk --- M/P ratio --- statistical modeling --- molecular descriptors --- chromatographic descriptors --- affinity chromatography --- anti-ACE --- anti-DPP-IV --- gastrointestinal digestion --- in silico --- molecular dynamics --- paramyosin --- seafood --- target fishing --- n/a
Choose an application
BioPolymers could be either natural polymers – polymer naturally occurring in Nature, such as cellulose or starch…, or biobased polymers that are artificially synthesized from natural resources. Since the late 1990s, the polymer industry has faced two serious problems: global warming and anticipation of limitation to the access to fossil resources. One solution consists in the use of sustainable resources instead of fossil-based resources. Hence, biomass feedstocks are a promising resource and biopolymers are one of the most dynamic polymer area. Additionally, biodegradability is a special functionality conferred to a material, bio-based or not. Very recently, facing the awareness of the volumes of plastic wastes, biodegradable polymers are gaining increasing attention from the market and industrial community. This special issue of Molecules deals with the current scientific and industrial challenges of Natural and Biobased Polymers, through the access of new biobased monomers, improved thermo-mechanical properties, and by substitution of harmful substances. This themed issue can be considered as collection of highlights within the field of Natural Polymers and Biobased Polymers which clearly demonstrate the increased interest in this field. We hope that this will inspire researchers to further develop this area and thus contribute to futures more sustainable society.”
imine --- epoxide --- amine --- thermoset --- bio-based --- biobased epoxy --- cardanol --- cationic photocuring --- microfibrillated cellulose --- biobased composites --- sustainable materials --- biomass --- green chemistry --- mechanims --- humins --- epoxy resins --- thermosets --- kinetics --- ring-opening --- biobased --- polyurethane foam --- catalyst --- polycarbonates --- furan-maleimide --- Diels-Alder --- fatty acids --- melt extrusion --- 3D printing --- cellulose nanofibrils --- biocomposite filaments --- physical property --- drained and undrained peatlands --- peats --- humic acids --- thermal --- paramagnetic and optical properties --- acetylated starch --- etherified starch --- chemical composition --- macromolecular characteristics --- surface characterization --- lignin --- fractionation --- biobased polymers --- solvent extraction --- membrane-assisted ultrafiltration --- plant oil-based monomers --- mixed micelles --- methyl-β-cyclodextrin inclusion complex --- emulsion polymerization --- nanocellulose --- polymer --- coating --- textile --- adhesion --- biobased monomer --- photoinduced-polymerization --- eugenol-derived methacrylate --- bacterial cellulose --- alginate --- gelatin --- curcumin --- biomaterials --- chitosan --- silane coupling agent --- microfiber --- crosslinking --- mechanical strength --- block copolymers --- renewable resources --- RAFT --- alkyl lactate --- PSA --- terpenoid --- exo-methylene --- conjugated diene --- renewable monomer --- biobased polymer --- radical polymerization --- copolymerization --- living radical polymerization --- RAFT polymerization --- heat-resistant polymer --- n/a
Choose an application
This book collects contributions published in the Special Issue “From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential” and dealing with successful stories of drug improvement or design using classic protocols, quantum mechanical mechanistic investigation, or hybrid approaches such as QM/MM or QM/ML (machine learning). In the last two decades, computer-aided modeling has strongly supported scientists’ intuition to design functional molecules. High-throughput screening protocols, mainly based on classical mechanics’ atomistic potentials, are largely employed in biology and medicinal chemistry studies with the aim of simulating drug-likeness and bioactivity in terms of efficient binding to the target receptors. The advantages of this approach are quick outcomes, the possibility of repurposing commercially available drugs, consolidated protocols, and the availability of large databases. On the other hand, these studies do not intrinsically provide reactivity information, which requires quantum mechanical methodologies that are only applicable to significantly smaller and simplified systems at present. These latter studies focus on the drug itself, considering the chemical properties related to its structural features and motifs. Overall, such simulations provide necessary insights for a better understanding of the chemistry principles that rule the diseases at the molecular level, as well as possible mechanisms for restoring the physiological equilibrium.
SARS-CoV-2 --- benzoic acid derivatives --- gallic acid --- molecular docking --- reactivity parameters --- selenoxide elimination --- one-pot --- imine-enamine --- reaction mechanism --- DFT calculations --- selenium --- anti-inflammatory drugs --- QSAR --- pain management --- cyclooxygenase --- multitarget drug --- cannabinoid --- neuropathic pain --- clopidogrel --- NMR study --- oxone --- peroxymonosulfate --- sodium halide --- thienopyridine --- drug discovery --- precision medicine --- pharmacodynamics --- pharmacokinetics --- coronavirus SARS-CoV-2 --- COVID-19 --- 3-chymotrypsin-like protease --- pyrimidonic pharmaceuticals --- molecular dynamics simulations --- binding free energy --- β-carrageenan --- antioxidant activity --- Box-Behken --- extraction --- Eucheuma gelatinae --- physic-chemistry --- rheology --- quercetin --- quercetin 3-O-glucuronide --- cisplatin --- nephrotoxicity --- cytoprotection --- lithium therapy --- neurocytology --- toxicology --- neuroprotection --- chemoinformatics --- big data --- methadone hydrochloride --- pharmaceutical solutions --- drug compounding --- high performance liquid chromatography --- stability study --- microbiology --- fucoidan --- alginate --- L-selectin --- E-selectin --- MCP-1 --- ICAM-1 --- THP-1 macrophage --- monocyte migration --- protein binding --- breast milk --- M/P ratio --- statistical modeling --- molecular descriptors --- chromatographic descriptors --- affinity chromatography --- anti-ACE --- anti-DPP-IV --- gastrointestinal digestion --- in silico --- molecular dynamics --- paramyosin --- seafood --- target fishing --- n/a
Listing 1 - 10 of 14 | << page >> |
Sort by
|